
7. Texture Mapping

1

Texture Mapping II

• Light maps
• Environment Maps
• Projective Textures
• Bump Maps
• Displacement Maps
• Solid Textures
• Mipmaps
• Shadows

7. Texture Mapping

2

Light Maps

• Simulates the effect of a local light source

• Can be pre-computed and dynamically
adapted

+ =

7. Texture Mapping

3

Light Maps

• Texture mapping in Quake

textures only textures and light maps 7. Texture Mapping

4

Environment Map

7. Texture Mapping

5

Environment Map

• Method to render
reflective objects

• Compute intersection
of reflected ray with
surrounding sphere

• Take parameter values
of intersection
as texture coordinates

n

(θ,φ)

7. Texture Mapping

6

Examples – Environment Map

7. Texture Mapping

7

Environment Map

• How to get an environment map of a real
environment?

7. Texture Mapping

8

Cube Mapping

• Sphere can be replaced by cube
• Simplify computations

7. Texture Mapping

9

Cube Map Demo

http://developer.nvidia.com/object/cube_map_ogl_tutorial.html 7. Texture Mapping

10

Linear Mapping

• Uses object or eye coordinates
• (In)dependent of transforms
• Can be used to visualize distance from objects

y

x

-x

z -z

7. Texture Mapping

11

An Example

• Mapping of distances from laser range data

7. Texture Mapping

12

Projective Textures

• Generalize texture coordinates to a 4D
homogeneous vector (u, v, r, q)

• Texture matrix computes full 4x4 transform to
(up, vp) used for texture lookup

• Texture image can be projected independently
of viewing projection

• Applications:
– Slide projector
– Spotlight simulation

7. Texture Mapping

13

Projection
Polygon

Screen

Eye

Texture

7. Texture Mapping

14

Examples

7. Texture Mapping

15

Examples

movie 7. Texture Mapping

16

Bump Mapping

• Adding surface detail without adding
geometry

• Perturbation of surface normal
• Details interact with light
• Bumps are small compared to geometry
• Bump pattern is taken from a (texture-) map
• Can also be procedural (fractals)

7. Texture Mapping

17

Bump Mapping

• Given a surface p(u,v) and
a perturbation value b (Jim Blinn)

• Point p’ on the bumpy surface

• Compute normal at Point p’

vuvu
ppppn ×=

∂
∂

×
∂
∂

=

n
npp b' +=

v
'

u
''

∂
∂

×
∂
∂

=
ppn

p

p’

Bump
pattern

b

7. Texture Mapping

18

Bump Mapping

• Partial derivatives at point p’

• Perturbed normal approximated by (see Blinn)

n
npp)(b

uuu
'

∂
∂

+
∂
∂

=
∂
∂

)(b)(b' vvuu pnpnnn ×+×+=

7. Texture Mapping

19

Bump Mapping

• Discretization using Finite Differences

v∆
),vb(u),vb(u),vb(u),vb(ub

u∆
),vb(u),vb(u),vb(u),vb(ub

v

u

2

2
12221121

21221112

−+−
=

−+−
=

∆v

∆u

b(u1 , v2) b(u2 , v2)

b(u2 , v1)b(u1 , v1)
7. Texture Mapping

20

Examples

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

7. Texture Mapping

21

Examples

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

movie 7. Texture Mapping

22

Bump Mapping

• What’s missing?
– Bumps on silhouette
– Self-occlusion
– Self-shadowing

7. Texture Mapping

23

Displacement Mapping

• Use the texture map to displace the geometry

7. Texture Mapping

24

Displacement Mapping

Image from:

Geometry Caching for
Ray-Tracing Displacement Maps

by Matt Pharr and Pat Hanrahan.

note the detailed shadows
cast by the stones

7. Texture Mapping

25

Solid Textures

• 3D bitmaps
• Procedural textures

7. Texture Mapping

26

Perlin Noise

7. Texture Mapping

27

Mip-Mapping

• Minimized textures produce aliasing effects
• Store texture at multiple levels-of-detail
• Use smaller versions when far from camera
• MIP comes from the Latin multum in parvo,

meaning a multitude in a small space.

without mipmap with mipmap mipmap
7. Texture Mapping

28

Texture Interpolation

• Compute texture value (R,G,B) as function of (u,v,z)
• Tri-linear interpolation

u

v

u

v

u

v

zz

7. Texture Mapping

29

Computation of the Mip Map

• Color = weighted average of nearby pixels (filter)
• See gluBuild2DMipMaps()

demo 7. Texture Mapping

30

Shadows

• Why are shadows important?
– Depth cue
– Scene lighting
– Realism
– Contact points

from Fredo Durand’s graphics class…

7. Texture Mapping

31

Shadows as a Depth Cue

7. Texture Mapping

32

For Intuition about Scene Lighting

• Position of the light (e.g. sundial)
• Hard shadows vs. soft shadows
• Directional light vs. point light

7. Texture Mapping

33

Cast Shadows on Planar Surfaces

• Draw the object primitives a second time,
projected to the ground plane

7. Texture Mapping

34

Limitations of Planar Shadows

• Does not produce self-shadows, shadows cast
on other objects, shadows on curved surfaces,
etc.

7. Texture Mapping

35

Shadow/View Duality

• A point is lit if it is
visible from the light
source

• Shadow computation
similar to view
computation

7. Texture Mapping

36

Fake Shadows using Projective
Textures

• Separate obstacle and receiver
• Compute b/w image of obstacle from light
• Use image as projective texture for each receiver

Figure from Moller & Haines “Real Time Rendering”

Image from light source BW image of obstacle Final image

7. Texture Mapping

37

Projective Texture Shadow
Limitations

• Must specify occluder & receiver
• No self-shadows
• Resolution

Figure from Moller & Haines “Real Time Rendering”

Image from light source BW image of obstacle Final image

7. Texture Mapping

38

Shadow Maps

• In Renderman (High-end production software)
• In Games (GPUs)

7. Texture Mapping

39

Shadow Mapping

• Texture mapping with
depth information

• Requires 2 passes
through the pipeline:

– Compute shadow
map (depth from
light source)

– Render final image,
check shadow map
to see if points are
in shadow Foley et al. “Computer Graphics Principles and Practice”

7. Texture Mapping

40

Shadow Map Look Up

• We have a 3D point (x,y,z)WS

• How do we look up
the depth from the
shadow map?

• Use the 4x4
perspective projection
matrix from the light
source to get (x',y',z')LS

• ShadowMap(x',y') < z'?
Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)WS(x',y',z')LS

7. Texture Mapping

41

Limitations of Shadow Maps

1. Field of View

2. Bias (Epsilon)

3. Aliasing

Foley et al. “Computer Graphics Principles and Practice”

7. Texture Mapping

42

Foley et al. “Computer Graphics Principles and Practice”

1. Field of View Problem

• What if point to
shadow is outside
field of view of
shadow map?
– Use cubical

shadow map
– Use only

spot lights!

7. Texture Mapping

43

2. The Bias (Epsilon) Nightmare

• For a point visible
from the light
source
ShadowMap(x’,y’) ≈ z’

• How can we
avoid erroneous
self-shadowing?
– Add bias (epsilon)

Foley et al. “Computer Graphics Principles and Practice”

7. Texture Mapping

44

2. Bias (Epsilon) for Shadow Maps

Correct image Not enough bias Way too much bias

• ShadowMap(x’,y’) + bias < z’
• Choosing a good bias value can be very tricky

7. Texture Mapping

45

3. Shadow Map Aliasing

• Under-sampling of the shadow map
• Reprojection aliasing – especially bad when the

camera & light are opposite each other

7. Texture Mapping

46

3. Shadow Map Filtering

• Should we filter the depth?
(weighted average of neighboring depth
values)

• No... filtering depth is not meaningful

7. Texture Mapping

47

3. Percentage Closer Filtering

• Instead filter the result of the test
(weighted average of comparison results)

• But makes the bias issue more tricky

7. Texture Mapping

48

3. Percentage Closer Filtering

• 5x5 samples
• Nice antialiased

shadow
• Using a bigger

filter produces
fake soft
shadows

• Setting bias
is tricky

7. Texture Mapping

49

Projective Texturing + Shadow Map

Eye’s ViewLight’s View Depth/Shadow Map

Images from Cass Everitt et al.,
“Hardware Shadow Mapping”

NVIDIA SDK White Paper

7. Texture Mapping

50

Shadows in Production

• Often use shadow
maps

• Ray casting as
fallback in case of
robustness issues

7. Texture Mapping

51

Hardware Shadow Maps

• Can be done with hardware texture mapping
– Texture coordinates u,v,w generated using 4x4

matrix
– Modern hardware permits tests on texture values

7. Texture Mapping

52

Shadow Volumes

• Explicitly represent the volume
of space in shadow

• For each polygon
– Pyramid with point

light as apex
– Include polygon to cap

• Shadow test similar
to clipping

7. Texture Mapping

53

Shadow Volumes

• If a point is inside a shadow
volume cast by a particular light,
the point does not receive any
illumination from that light

• Cost of naive
implementation:
#polygons * #lights

7. Texture Mapping

54

Shadow Volumes

• Shoot a ray from the eye to
the visible point

• Increment/decrement a
counter each time we
intersect a shadow
volume polygon

• If the counter ≠ 0,
the point is
in shadow

+1-1

+1

7. Texture Mapping

55

Optimizing Shadow Volumes

• Use silhouette edges only (edge where
a back-facing & front-facing polygon meet)

L

A

7. Texture Mapping

56

Limitations of Shadow Volumes

• Introduces a lot of new geometry
• Expensive to rasterize long skinny triangles
• Objects must be watertight to use silhouette

trick
• Rasterization of polygons sharing an edge

must not overlap & must not have gap

7. Texture Mapping

57

Homework

7. Texture Mapping

58

