

Contouring and Isosurfaces

What are contours?

Set of points where the scalar field s has a given value c :

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: s(\mathbf{x})=c\right\}
$$

Examples in 2D:

- height contours on maps
- isobars on weather maps

Contouring algorithm:

- find intersection with grid edges
- connect points in each cell

Example

contour levels

$$
\begin{aligned}
& -4 \\
& --4 ? \\
& -6-\varepsilon \\
& -8-\varepsilon \\
& --8+\varepsilon
\end{aligned}
$$

2 types of degeneracies:

- isolated points (c=6)
- flat regions (c=8)

Topological consistency

To avoid degeneracies, use symbolic perturbations:
If level c is found as a node value, set the level to $c-\varepsilon$ where ε is a symbolic infinitesimal.

Then:

- contours intersect edges at some (possibly infinitesimal) distance from end points
- flat regions can be visualized by pair of contours at $c-\varepsilon$ and $c+\varepsilon$
- contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

Ambiguities of contours

What is the correct contour of $c=4$?
Two possibilities, both are orientable:

- values $s(x)>c$ are on the left side
- values $s(\mathbf{x})<c$ are on the right side

Answer: correctness depends on interior values of $s(\mathbf{x})$.
But different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Contours in a quadrangle cell

- local coordinates:
- function values:

$$
\begin{aligned}
& (0,0),(1,0),(0,1),(1,1) \\
& s_{00}, s_{10}, s_{01}, s_{11}
\end{aligned}
$$

- bilinear interpolant:

$$
\begin{aligned}
s & =(1-x)(1-y) s_{00}+x(1-y) s_{10}+(1-x) y s_{01}+x y s_{11} \\
& =A x y+B x+C y+D
\end{aligned}
$$

If $A=0$, contour equation is $C=B x+C y+D$ contours are straight lines, all parallel

If $A \neq 0$, contour equation is

$$
c=A\left(x+\frac{C}{A}\right)\left(y+\frac{B}{A}\right)+D-\frac{B C}{A}
$$

contours are hyperbola, except for level $c=D-\frac{B C}{A}$

Contour equation for special level:

$$
0=A\left(x+\frac{C}{A}\right)\left(y+\frac{B}{A}\right)
$$

Contour is a pair of axis-aligned straight lines $x=-C / A$ and $y=-B / A$.

Applied to example:

- contour equation:

$$
c=-10(x-0.3)(y-0.5)+4.5
$$

- special level c=4.5
- saddle point at (0.3, 0.5)

Decision can be made without computing special level or saddle point, by comparing fractions of edges:

Using local coordinates, this works also for curvilinear and unstructured grids.

Note: For drawing, straight lines are sufficient. Drawing hyperbola does not lead to better contours:

Reason: piecewise bilinear function is not C^{1}.

Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours
"Marching squares" algorithm (systematic cell-by-cell):
- process nodes in ccw order, denoted here as $\mathbf{X}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{X}_{3}$
- compute at each node \mathbf{X}_{i} the reduced field $\tilde{s}\left(\mathbf{X}_{i}\right)=s\left(\mathbf{X}_{i}\right)-(c-\varepsilon) \quad$ (which is forced to be nonzero)
- take its sign as the $i^{\text {th }}$ bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:

- $\tilde{s}\left(\mathbf{x}_{i}\right)<0$
- $\tilde{s}\left(\mathbf{x}_{i}\right)>0$

Alternating signs exist in cases 6 and 9.
Choose the solid or dashed line?

Both are possible for topological consistency.
This allows to have a fixed table of 16 cases.

Contours in triangle/tetrahedral cells

Linear interpolation of cells implies piece-wise linear contours.

Contours are unambiguous, making

"marching triangles" even simpler than "marching squares".

Question: Why not split quadrangles into two triangles (and hexahedra into five or six tetrahedra) and use marching triangles (tetrahedra)?

Answer: This can introduce periodic artifacts!

Illustrative example: Find contour at level $c=40.0$!

--- triangulated grid, yielding vertices \square and contour $\cdot \ldots$.

3D example based on real (downsampled) dataset. Contour (=isosurface) in
original hexahedral grid

vs. in tetrahedrized grid:

The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as

- contours on planar slices, followed by
- "contour stitching".

The marching cubes algorithm computes contours directly in 3D.

- Pieces of the isosurfaces are generated on a cell-by-cell basis.
- Similar to marching squares, a 8-bit number is computed from the 8 signs of $\tilde{s}\left(\mathbf{x}_{i}\right)$ on the corners of a hexahedral cell.
- The isosurface piece is looked up in a table with 256 entries.

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:

- rotational symmetries of the cube
- reflective symmetries of the cube
- sign changes of $\tilde{S}(\mathbf{x})$

They published a reduced set of 14^{*}) cases shown on the next slides where

- white circles indicate positive signs of $\tilde{S}(\mathbf{x})$
- the positive side of the isosurface is drawn in red, the negative side in blue.
*) plus an unnecessary "case 14" which is a symmetric image of case 11.

The marching cubes algorithm

The marching cubes algorithm

case 12 case 13

Do the pieces fit together?

- The correct isosurfaces of the trilinear interpolant would fit (trilinear reduces to bilinear on the cell interfaces)
- but the marching cubes polygons don't necessarily fit.

Example

- case 10 , on top of
- case 3 (rotated, signs changed)
have matching signs at nodes but polygons don't fit.

Reason for failure:
Topology decision on faces with alternating signs.
Decision by original MC algorithm is not correct w.r.t. the interpolant, and not consistent.
A consistent decision would be: always cut off the positive corners!

Original MC table obeys this rule, but:
It is lost when sign change is applied!
Consequence:
Extend table by 14 complementary cases for changed signs!

The marching cubes algorithm

The remaining complementary cases are obtained simply by changing the orientation.
Example:

Based on the 28 cases, the full 256 cases are obtained by

- rotations of the cube
- reflections of the cube (and re-orienting of triangles)

Summary of marching cubes algorithm:

Pre-processing steps:

- build a table of the 28 cases
- derive a table of the 256 cases, containing info on
- intersected cell edges, e.g. for case 3/256 (see case 2/28): $(0,2),(0,4),(1,3),(1,5)$
- triangles based on these points, e.g. for case 3/256:
$(0,2,1),(1,3,2)$.

Loop over cells:

- find sign of $\tilde{s}(\mathbf{x})$ for the 8 corner nodes, giving 8 -bit integer
- use as index into (256 case) table
- find intersection points on edges listed in table, using linear interpolation
- generate triangles according to table

Post-processing steps:

- connect triangles (share vertices)
- compute normal vectors
- by averaging triangle normals (problem: thin triangles!)
- by estimating the gradient of the field $s(\mathbf{x})$ (better)

The asymptotic decider algorithm

Motivation for a different isosurface algorithm:

Marching cubes can produce "bad" topology. 2D example (marching squares):

Asymptotic decider algorithm (Nielson and Hamann 1991) :

- generate topologically correct contours (as oriented straight line segments) on the cell interfaces
- connect these around the cell, resulting in one or more polygons
- triangulate the polygons

In general, the AD algorithm generates better isosurfaces.

However,

- it cannot be easily implemented with a table like MC (too many cases)
- it generates polygons with up to 12 sides (MC: up to 7)
- the topology is correct w.r.t the trilinear interpolant, but the geometry can deviate
- some polygons cannot be "cleanly" triangulated

A few examples are given on the next slide, showing isosurfaces of the trilinear interpolant.

The asymptotic decider algorithm

The 8 -sided polygon has no valid triangulation!

- either some triangles lie on faces of the cell
- or an extra vertex has to be used

Post-processing of isosurfaces

Example (VTK demo): pine root dataset

(1) unprocessed MC isosurface

Example (VTK demo): pine root dataset

(2) largest connected component only

Algorithm: connected component labeling

Example (VTK demo): pine root dataset

(3) decimated from 351,118 to 81,111 triangles

Purpose of decimation:

- data reduction
- improve mesh quality (thin/small triangles)
Algorithm (Schroeder):
- vertex removal
- feature edges kept

The dividing cubes algorithm

An early point-based algorithm (Crawford et al. '87): For each cell

- check whether it is intersected by the isosurface:

$$
\min _{i \in c e l l} s_{i}<c<\max _{i \in c e l l} s_{i}
$$

- subdivide intersected cell into $m \times m \times m$ subcells using trilinear interpolation
- draw the centers of all intersected subcells

Points can be lit:

- estimate the gradient and use it as the normal vector

Optimized isosurface algorithms

Approaches to speeding up isosurface computation:

View dependent algorithms

- occluded triangles not computed
- GPU-based isosurface computation and rendering

Data preprocessing for fast computation of multiple isosurfaces (multiple levels), e.g. for interactive exploration of the data.

- many methods: octree, extrema graph, span space
- common goal: avoid computation in non-intersected cells.

The octree-based algorithm

Method by Wilhelms and van Gelder (1992) for (block-)structured grids.

Pre-processing:

- recursively split the grid in two subgrids, building up a binary tree of subgrids, stop splitting when single cells are reached.
- compute minimum and maximum of $s(\mathbf{x})$ per subgrid, store as an interval [min, max] in the tree.

Computing the isosurface for a level c :

- starting at the root,
- descend recursively to subtrees if $\min <c<\max$
- if a leaf is reached, generate the isosurface for the respective cell with MC or AD.

The span-space algorithm

Method by Livnat (1996).

Pre-processing:

- for each cell compute min and max,
- treat (min,max) as a point in the span space (Euclidean plane)
- store points in boxes, non-empty boxes organized as linked list

Computing the isosurface for a level c :

- Find the intersected cells in the quadrant min<c, max>c

Performance gain for datasets with small local variation, i.e. points in span space distributed mostly near diagonal

Limitations of isosurfaces

Isosurfaces represent only a single level within the data range. In practial data, there is often not a single "interesting" level.

Example: Von Kármán vortex street, colored by entropy.

"interesting" level: red on the left, green on the right. How should a 3D version of these data be visualized?

Transparent rendering of multiple isosurfaces is possible, but:

- limited to a small number by visibility
- alpha-blending requires depth sorting

Alternatives:

- feature extraction methods, e.g. detecting "blobs" (maximal ellipse-like contours).
- volume rendering can show ranges of "interesting" levels of the field and/or its gradient.

