

• are predominantly applied to uniform grids (3D images).

SciVis 2007 - Raycasting

Ronald Peikert

	Ray templates	
A ray template (Yag generates all vie	gel 1991) is a voxelized ray which b w rays.	y translating
Ray templates spectres restricted to orth	ed up the sampling process, but are <mark>lographic</mark> views.	obviously
Algorithm:		
Rename volume the image plane	e axes such that z is the one "most o	orthogonal" to
 Create ray temp giving 26-conne (have exactly or 	late with 3D version of Bresenham cted rays which are functional in <i>z</i> o ne voxel per <i>z</i> -layer)	algorithm, coordinate
Translate ray ter	mplate in base plane, not in image	olane
Ronald Peikert	SciVis 2007 - Raycasting	3-6

The emission-absorption modelHow realistic is
$$\alpha$$
-compositing?The emission-absorption model (Sabella 1988) yields a basic
volume rendering equation $L(x) = \int_{x}^{x_{0}} \varepsilon(x') e^{-\int_{x}^{x} (x') dx'} dx'$ The equation describes the radiance (power per unit area per solid
angle [W/m²/sr]) arriving along a ray at the position x on this ray.The emission function $\varepsilon(x)$ describes the photons "emitted" by the
volume along the ray.The absorption function $\tau(x)$ is the probability that a photon traveling
over a unit distance is lost by absorption.Rored PekertSolva 2007 - ReycastingStrateSolva 2007 - Reycasting3-13Rored PekertStrateSolva 2007 - Reycasting3-13Rored Pekert

	_
Transfer functions	
In pre-classification, the voxels can also be lit:	
• The gradient is perpendicular to the local isosurface. It can be used as a normal vector for a Phong lighting (without rendering the isosurface itself).	
• Reflection coefficients can be assigned by a separate transfer function ("materials" instead of colors only).	
• The diffuse lighting can be applied to the entire volume dataset as a pre-processing since it is independent of the viewing direction.	
Ronald Peikert SciVis 2007 - Raycasting 3-24	

