
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Improving a demo program for
triangle meshes

Semester project in computer science
realized at the computer graphics laboratory

ETH Zürich
2004/2005

submitted by

Michael Sauter

Tutor: Christian Sigg
Supervisor: Prof. Dr. Markus Gross

1 The triangle mesh demo program . 3
1.1 The user interface - General description . 4
1.2 Fairing . 6

1.2.1 Notation and definitions . 6
1.2.2 Mesh frequencies . 7
1.2.3 Diffusion equation . 7
1.2.4 Umbrella operator . 8
1.2.5 Improved umbrella operator . 10
1.2.6 Curvature flow . 12
1.2.7 Second order difference operator . 14
1.2.8 Implicit fairing . 16
1.2.9 Volume preserving, anti-shrinking fairing . 17
1.2.10Fairing – The user interface . 19
1.2.11Mesh frequency decomposition . 21
1.2.12Mesh frequency decomposition – The user interface 24

1.3 Subdivision . 26
1.3.1 Notation and definitions . 27
1.3.2 Loop subdivision scheme . 28
1.3.3 Modified Butterfly subdivision scheme . 30
1.3.4 Sqrt3-Subdivision scheme . 32
1.3.5 Subdivision – The user interface . 35

1.4 Mesh decimation . 37
1.4.1 Quadric error metric . 38
1.4.2 Roundness . 40
1.4.3 Binary constraints . 42
1.4.4 Mesh decimation – The user interface . 43

1.5 Technical details . 45

A References . 47
1

.
2

1The triangle mesh demo
program

In this chapter the demonstration program for triangular mesh processing will be presented
in detail. Starting with a general description of the user interface, the focus will move on to the
three main parts of this chapter, namely the mesh processing methods subdivision, mesh deci-
mation and fairing. Each such part shall include documentation and illustration of the specific
user interface, information about the theoretical background, a critical discussion on the applied
methods and a presentation of the achieved results.
3

1. THE TRIANGLE MESH DEMO PROGRAM
1.1 The user interface - General description
This section will provide a general description of the user interface of the triangle mesh demo
program and point out some of the basic functionality.

Figure 1.1 gives a first impression of what the demo program looks like. Following a very
simple structure, the user interface consists of two main parts: A menu bar and a rendering view.
The former offers a bunch of options to load, store and process a triangle mesh model, whereas
the latter deals with the classical rendering part and supports some of the fundamental viewing
actions like rotation or zooming. There is left to say that the triangle mesh demo program starts
from a console, where additional information messages are posted during runtime.

Figure 1.1: The triangle mesh demo program user interface. Dragon model with vertex
normal coloring.
4

1.1 THE USER INTERFACE - GENERAL DESCRIPTION
A couple of rendering options can be accessed by specific keys which are listed below.
Remember that the rendering view area must be active (click into the view area) to successfully
process the key input.

File menu Contains procedures for opening, reverting or saving a triangle
mesh model. The supported file formats are *.obj, *.off, *.om,
*.stla, *.stlb. Furthermore, an option to load a texture image of
type *.bmp, *.png, *.pnm, *.xbm or *.xpm is at hand.

Algorithm menu Holds and activates the mesh surface processing methods subdivi-
sion (“Subdivider”), fairing (“Smoother”), mesh decimation
(“Decimater”) and mesh frequency decomposition (“Frequency”).

Rendering menu Rendering mode selection. One can choose between wireframe,
flat and Gouraud shading, point cloud rendering, hidden-line re-
moval or textured rendering. Additionally there are drawing
modes for the visualization of mesh surface properties like vertex
normal direction, first and second principle curvature, mean as
well as Gaussian curvature and shape index. These drawing modes
can be found in the submenu “Colored Vertices”. Last but not
least, there is the possibility to show face and/or vertex normal
vectors respectively by exploring the “Draw Vectors” submenu.

Please note that the two mentioned submenus will offer further vi-
sualization modes depending on the currently active mesh surface
processing method (for more information on that refer to the meth-
od specific sections in this chapter).

The rendering menu can also be opened by pushing the right
mouse button when pointing into the rendering view area.

Help menu As the complexity of the demo program is still limited, there seems
no use in offering some guidance to the user. However, for future
developments, a help menu was already included, even without
providing any real functionality.

Table 1.1: Description of the triangle mesh demo program menus.

Key Action

“F“ Turn fog on/off.

“T“ Swap between different texture modes.

“S“ Turn specular reflection on/off.

“I“ Information output about the model and the scene on the console.

Table 1.2: Special keys.
5

1. THE TRIANGLE MESH DEMO PROGRAM
1.2 Fairing
The visual realism of computer graphics applications heavily depends on the quality of the 3D
models used, especially on their level of detail. Therefore, a high complexity for 3D models is
often desired. However, designing such models from scratch is quite time consuming and can
be troublesome. As a solution, the combination of 3D-laser range scanning devices with surface
reconstruction techniques allows a rather easy acquisition of highly complex triangle meshes
and is widely used in practice. Unfortunately, the scanning process is not free of measuring
errors and as a consequence the acquired data may suffer from degradation by noise. To regain
the original smoothness, the triangle mesh of the scanned object has to be post-processed and
that is where fairing comes into play.

Fairing provides means to get rid of noise on triangular meshes as well as remove undesirable
rough features. Fairing can be seen as an extension to lowpass filtering in signal processing and
the basic idea behind it is to remove high frequency components from the surface geometry.

1.2.1 Notation and definitions

Throughout the following sections a couple of definitions will be used which shall be stated in
this section.

A mesh will be denoted by X, its vertices by xi (X can be seen as a vector (x1, x2, ..., xn)T

holding the mesh vertices). An edge connecting two vertices xi and xj will be called eij. Ε will
stand for the set of all mesh edges. N1(i) will refer to the 1-ring neighbors of xi, i.e., all the ver-
tices xj such that there exists an edge eij between xi and xj. In analogy, E1(i) will define the set
of all edges adjacent to xi, i.e., all edges eij such that xj is in N1(i).

L(X) will denote the Laplacian operator of the mesh X:

(1.1)

where u and v parametrize the mesh surface. However, for practical reasons we will only work
with a discretization of the Laplacian, i.e., linear approximations.

There is also a notion of second Laplacian which is defined as follows:

(1.2)

L X() Xuu Xvv+=

L2 X() L L X()• Xuuuu= 2 Xuuvv Xvvvv .+ +=
6

1.2 FAIRING
1.2.2 Mesh frequencies

Defining the notion of frequencies in the context of triangle meshes is not obvious, but can be
covered by introducing the so called generalized frequencies. Generalized frequencies are defi-
ned as the eigenvectors of the Laplacian and can be used to decompose the mesh into its fre-
quency components. With such a decomposition a triangle mesh could be smoothed by simply
discarding the high frequencies, i.e., the eigenvectors of the largest corresponding eigenvalues
of the Laplacian. However, numerical instability and high computational cost make this
approach infeasible for large meshes1.

1.2.3 Diffusion equation

A more stable and more efficient way to attenuate noise in a mesh is through a diffusion process:

(1.3)

Integrating Equ. (1.3) over time will balance the noise throughout the mesh. The high fre-
quencies will be smoothed, while the main shape will only suffer from a slight degradation.

Assuming a discretization of the Laplacian has been defined, the diffusion equation could be
handled with a simple explicit Euler forward integration scheme:

(1.4)

where Xn denotes the mesh after the n-th integration step.
The next matter of concern will be the problem of discretizing the Laplacian along with the

question what this discretization should look like. As an answer, various discretization forms
have been proposed, each of them resulting in a specific behavior of the smoothing process. In
the following sections some of these discretized Laplacians will be presented.

1. Nonetheless, such a method was implemented in the demo program. See Section 1.2.11.

X∂
t∂

------ λ L X() .=

Xn 1+ I λ t Ld+() Xn=
7

1. THE TRIANGLE MESH DEMO PROGRAM
1.2.4 Umbrella operator

The umbrella operator approximates the Laplacian in a linear fashion at every mesh vertex:

(1.5)

where xj is a neighbor of the vertex xi and m = #N1(i) is the number of these neighbors (valency
of xi).

Because of its linear form, the umbrella operator can be represented by a matrix, where every
row is connected to a 1-ring neighborhood in the mesh and specifies the weights of its vertices.
Solving Equ. (1.3) with an explicit Euler integration scheme as in Equ. (1.4) would then involve
simple matrix-vector products. However, it seems more convenient to do the integration steps
directly per vertex:

(1.6)

where xi
n denotes the mesh vertex xi after the n-th integration step. For reasons of stability,
 has to be fulfilled, otherwise the mesh will be teared apart during the integration pro-

cess. This restriction can be relaxed by using an implicit integration scheme (see Section 1.2.8).

Figure 1.2: (a): Noisy sphere (1’026 vertices), flat-shaded and with colored mean cur-
vature. (b): Smoothed version after 8 iterations of the umbrella operator.
High fluctuations in mean curvature vanish. (c): Noisy head (17’358 ver-
tices). (d): Smoothed version after 2 iterations of the umbrella operator. The
integration step size was set to 1.0 in both cases.

L xi() 1
m
---- xj xi–

j N1 i()∈
∑=

xi
n 1+ xi

n λ t L xi
n()d+=

λ td 1<

(a) (b) (c) (d)
8

1.2 FAIRING
The umbrella operator tends to regularize the mesh, i.e., adapting the edge lengths and the
angles in the 1-ring neighborhoods of the vertices. As a consequence, a vertex drift in highly
irregular parametrized areas of the mesh occurs, which can distort the geometry severely and
may lead to problems in the context of texturing. Hence, efforts were taken to improve the
umbrella operator, which led to a more sophisticated version (see next section).

Figure 1.3: Vertex drift using the umbrella operator. (a): 3 smoothing iterations on the
sphere model. The regularization tendency of the umbrella operator can be
observed, especially in the marked area. (b): 3 smoothing iterations on the
head model. Texture gets distorted due to vertex drift.

(a) (b)
9

1. THE TRIANGLE MESH DEMO PROGRAM
1.2.5 Improved umbrella operator

A relaxation to the inherent regularization approach of the umbrella operator is given by the
improved umbrella operator. Not only the connectivity, but also the edge lengths are now taken
into account.

(1.7)

where |eij| is the length of edge eij.

Note that as opposed to the original umbrella operator, this discretization of the Laplacian is
no longer linear because in principle, the edge lengths do not stay constant over the diffusion
process. However, fixing the edge lengths for an integration step and thus linearizing the sys-
tem, seems to work well and does not reveal any drawbacks.

A major disadvantage of the improved umbrella operator is stability. Using an explicit inte-
gration scheme will mostly fail unless a really small step size is chosen. As a remedy, one can
switch to an implicit integration scheme (see Section 1.2.8), which makes the improved
umbrella operator applicable, at least for moderate integration step sizes.

Figure 1.4: (a): Noisy sphere (1’026 vertices), flat-shaded. (b): Smoothed version after
1 iteration of the improved umbrella operator using an integration step size
of 1.0. The colored image visualizes smoothing distances. (c): Noisy head
(17’358 vertices). (d): Smoothed version after 1 iteration of the improved
umbrella operator. The integration step size was set to 0.0002. Smoothing
distances are colorized in the rightmost image. Due to the numerical insta-
bility of the improved umbrella operator, implicit integration was used in
both cases.

L xi() 2
E

xj xi–
eij

-------------- , with E eij
j N1 i()∈

∑=
j N1 i()∈

∑=

(a) (b) (c) (d)
10

1.2 FAIRING
Although the improved umbrella operator shows a better behavior when facing irregular
parametrized areas, the undesired effect of sliding vertices can still be observed during the
smoothing process, especially on flat surfaces.

Figure 1.5: Vertex drift using the improved umbrella operator. (a): 1 smoothing iterati-
on on the sphere model. The improved umbrella operator still shows the un-
desirable regularization behavior in the marked area. (b): 1 smoothing
iteration with integration step size 0.003 on the head model. The texture gets
distorted as well, but the improvement compared to the original umbrella
operator is obvious. In both cases implicit integration was used.

(a) (b)
11

1. THE TRIANGLE MESH DEMO PROGRAM
1.2.6 Curvature flow

To tackle the problem of drifting vertices (see previous sections), the curvature flow operator
has been developed. Its goal is to remove noise without depending on the parametrization of the
mesh surface. Smoothing will only take place along the surface normal n and the moving speed
will be determined by the mean curvature :

(1.8)

where and ni denote the mean curvature and the surface normal at vertex xi respectively.

This approach leads to the curvature flow operator (the derivation of the formula can be
found in [1]):

(1.9)

where αj and βj form the triangle angles opposite to the common edge eij. Figure 1.6 illustrates
the setting for the curvature flow operator.

Figure 1.6: Illustration of curvature flow operator.

κ

xi∂
t∂

------- κi ni–=

κi

L xi() 1

αj βjcot+cot()
j N1 i()∈

∑
--- αj βjcot+cot() xj xi–()

j N1 i()∈
∑⋅=
12

1.2 FAIRING
As stated at the beginning of this section, the curvature flow operator does not depend on the
parametrization of the mesh surface, hence no drifting vertices can be observed. The advantage
of using the curvature flow operator is visualized in Figure 1.8(b). Unlike the umbrella operator
(Figure 1.3(b)), the texture of the head model is not distorted.

Figure 1.7: (a): Noisy sphere (1’026 vertices), flat-shaded. (b): Smoothed version after
8 iterations of the curvature flow operator. (c): Noisy head (17’358 ver-
tices). (d): Smoothed version after 2 iterations of the curvature flow opera-
tor. The integration step size was set to 1.0 in both cases.

Figure 1.8: No vertex drift using the curvature flow operator. (a): 5 smoothing iterations
on the sphere model. The curvature flow operator does not touch the under-
lying parametrization, the vertices “stay” in place. (b): 5 smoothing iterati-
ons on the head model. No texture distortion at all.

(a) (b) (c) (d)

(a) (b)
13

1. THE TRIANGLE MESH DEMO PROGRAM
1.2.7 Second order difference operator

A further approach to construct a discrete fairing operator is based on second order differences.
Second order differences are defined as the difference between two normals on neighboring tri-
angles and can be associated with their common edge. They will be referred to by D(e), where
e denotes the common edge (see Figure 1.9).

Fairing is done by minimizing the energy H, defined as the sum of the squared second order
differences over all mesh edges.

(1.10)

(1.11)

Solving the minimization problem leads, after sorting and summation, to the following per-
vertex expression:

(1.12)

The coefficients ce,i are defined in terms of signed triangle areas and edge lengths. They also
appear as weights in the terms αe, which represent linear combinations of mesh vertices lying
in the 1-ring neighborhood N1(i) of vertex xi. A more detailed description of these coefficients
can be found in [2], here they will not be discussed any further. Important property of
Equ. (1.12) is that the fairing process using second order differences has a local characteristic
again, i.e., only the 1-ring neighborhood of a vertex influences how it will be smoothed.

Figure 1.9: Second order difference .D e() n1 n2–=

H D e()2 .
e E∈
∑=

X miarg nX H .=

xi ce i, αe
e E1 i()∈

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

– ce i,
2

e E1 i()∈
∑

⎝ ⎠
⎜ ⎟
⎛ ⎞

⁄ .=
14

1.2 FAIRING
Similar to the curvature flow operator, there is no need to concern about drifting vertices,
since second order differences do not depend on the mesh parametrization either (see Figure
1.11). Experimenting with the second order difference operator showed that it is advisable to
choose small integration step sizes or make use of an implicit integration scheme (see
Section 1.2.8), whereby the stability can be clearly improved.

As a final remark, there should be stated that the second order difference operator is, from a
computational point of view, the most expensive operator of those presented in this documen-
tation, but at the same time the least aggressive one, when focusing on the smoothing degree.

Figure 1.10: (a): Noisy sphere (1’026 vertices), flat-shaded. (b): Smoothed version after
8 iterations of the second order difference operator. (c): Noisy head (17’358
vertices). (d): Smoothed version after 2 iterations of the second order diffe-
rence operator. The integration step size was set to 1.0 in both cases.

Figure 1.11: As with the curvature flow operator, no drifting vertices can be found using
the second order difference approach. (a): 5 smoothing iterations on the
sphere model. (b): 10 smoothing iterations on the head model. Almost no
texture distortion.

(a) (b) (c) (d)

(a) (b)
15

1. THE TRIANGLE MESH DEMO PROGRAM
1.2.8 Implicit fairing

So far the diffusion equation Equ. (1.3) from Section 1.2.3 was assumed to be solved by an
explicit Euler integration scheme. For most purposes the usage of such a scheme is sufficient
and serves well. However, as a consequence, the choice for the integration step size will be
restricted, i.e., it has to be smaller than one, otherwise great stability problems will be encoun-
tered (see Figure 1.12).

To relax the restriction on the integration step size and to increase the overall stability of the
diffusion process, one may consider to apply an implicit integration scheme. Thus, the integra-
tion step for Equ. (1.3) can be written as:

(1.13)

Since we use linear approximations for the discretized Laplacian, we will end up with the
following linear equation system:

(1.14)

Solving this system seems to be straightforward, but turns out to be a bit tricky. The point to
consider is the problem size. Writing the discretized Laplacian in matrix form will lead to a n
by n matrix, where n is the number of mesh vertices, and thus solving the system will be infea-
sible for large triangle meshes. However, since the matrix is sparse (each row
contains approximately six non-zero, off-diagonal elements, which is the expected size of a
vertex 1-ring neighborhood for triangular meshes), an iterative solving approach can be taken
into account. The preconditioned bi-conjugate gradient method (refer to [14] for some
pseudocode and more information) turns out to be suitable as it is based on simple matrix-vector
multiplies which burn down to linear time computation because of the sparsity of matrix A.

Using the implicit integration scheme allows to deal with large integration step sizes and
therefore achieves smoothing results which would require multiple runs in the explicit integra-
tion case. Nevertheless, despite the efficient linear solver, the implicit integration approach is

Figure 1.12: (a): Bunny model (35’947 vertices), flat-shaded. (b): Instability of explicit
integration scheme for step size 20.0. For the single smoothing iteration the
umbrella operator was used. (c): Implicit integration scheme. The same in-
tegration step size as in (b) leads to a nicely smoothed bunny mesh. (d): 20
smoothing iterations of the umbrella operator using the explicit integration
scheme with step size 1.0 lead to similar smoothness as in (c). Despite the
multiple iterations this approach is still an order of 15 times faster than the
implicit approach.

(a) (b) (c) (d)

Xn 1+ I λ t Ld–() 1– Xn .=

I λ t Ld–() Xn 1+ Xn .=

A I λ t Ld–()=
16

1.2 FAIRING
still significantly slower than its explicit counterpart. Furthermore, it has to be said that visual
differences in the results of the two integration schemes are hardly observable.

1.2.9 Volume preserving, anti-shrinking fairing

Using the diffusion process modeled by Equ. (1.3) as the basis for fairing, holds an inconvenient
matter. Diffusion induces shrinkage, a property which is normally not desirable. Depending on
the smoothing degree, the impact of shrinkage may be significant and countermeasures have to
be taken into account (see Figure 1.13).

Taubin proposed to use a linear combination of the Laplacian L and the second Laplacian L2

of the form to minimize shrinkage. However, the parameters λ and µ have to
be tuned by the user and differ from mesh to mesh.

A more general and much simpler method can be found in [1]. The idea behind their
approach is to preserve the volume of an object throughout the smoothing process. Therefore,
first of all, the interior volume of a triangle mesh must be computed. This can be done by sum-
ming the volumes of all the oriented pyramids centered at a point in space (the origin, for
instance) and with the triangles of the mesh as bases. For a more formal definition let xk,1, xk,2
and xk,3 denote the three vertices of the k-th triangle of a mesh. Then the expression for the
volume looks as follows:

(1.15)

where gk = (xk,1 + xk,2 + xk,3) / 3 and Nk = (xk,2 − xk,1) × (xk,3 − xk,1). Since the sum goes over
all mesh triangles, the time complexity of the computation will be linear in the number of trian-
gles.

With the volume formula at hand, an automatic anti-shrinking fairing can be implemented
quite easily. Starting with the initial mesh volume V0, a smoothing integration step is applied,
which leads to a new volume Vn. To cancel the shrinking effect, we want to scale the mesh back
to its initial volume V0. This can be achieved by simply scaling the mesh vertices with the factor

Figure 1.13: (a): Noisy sphere (1’026 vertices), Gouraud shading. (b): Smoothed version
without volume preservation. The improved umbrella operator together
with the implicit integration scheme was used. The integration step size was
set to 1.0. (c): Smoothed version of (a) with activated anti-shrinking.

(a) (b) (c)

λ µ+()L λ µ L2–

V 1
6
--- gk Nk⋅

k
∑=
17

1. THE TRIANGLE MESH DEMO PROGRAM
β = (V0 / Vn)1/3. Note that with this approach there is no need to tune any parameters, the anti-
shrinking process adapts automatically to the mesh and to the smoothing. The nice effect of anti-
shrinking extended fairing can be observed in Figure 1.13.

As a critical remark, volume preservation can not prevent degeneration of thin parts of the
mesh.
18

1.2 FAIRING
1.2.10 Fairing – The user interface

The fairing specific operations are handled by the tool bar shown in Figure 1.14. The different
action areas, marked by numbers, represent the interface to the discussed theoretical methods
so far. Note that a special mesh coloring entry called “Smoothing Distance” to visualize the
effect of fairing is available and can be found in the “Colored Vertices” rendering submenu.

Figure 1.14: User interface for fairing.
19

1. THE TRIANGLE MESH DEMO PROGRAM
Selection of the fairing operator. The available operators are umbrella, improved
umbrella, curvature flow and second order difference (see sections 1.2.4, 1.2.5,
1.2.6 and 1.2.7).

Number of successive smoothing iterations to perform. Make use of this option to
store all intermediate smoothing steps, which allows for more detailed animations.

Integration method for solving the diffusion equation. Implicit integration can
handle integration step sizes greater than 1.0 without facing stability problems,
however, it is significantly slower than the explicit integration scheme, which in
return is bound to small integration step sizes (see sections 1.2.3 and 1.2.8). Note
that the input field for the integration step size also accepts floating point numbers
printed in the format [mantissa]e[exponent]. So 0.02 may be printed as 2e-2, for
example.

Enable/disable mesh volume preservation (see Section 1.2.9).

Start the smoothing process.

Show an animated transition between the mesh before and after the fairing step.

Slider to morph between the original and the smoothed mesh by hand.

Table 1.3: Description of the fairing tool bar.
20

1.2 FAIRING
1.2.11 Mesh frequency decomposition

As mentioned in Section 1.2.2, the notion of generalized frequencies can be used to describe the
frequencies of a mesh. Generalized frequencies are defined as the eigenvectors of the Laplacian
and consequently represent solutions to the following eigenproblem:

(1.16)

where L denotes the discretized Laplacian of a mesh X. Let ek be the generalized eigenvectors
solving the eigenproblem given by Equ. (1.16), then the mesh X can be written as a linear com-
bination of these eigenvectors:

(1.17)

where n holds the number of mesh vertices. The coefficients αk can be computed by projecting
the mesh, or rather its vertices, onto the eigenvectors ek. This is done by applying the inner pro-
duct:

(1.18)

One might notice that this is a generalized fourier transform.

The frequency decomposition of a mesh allows to apply methods from signal processing like
lowpass filtering, for example. The idea to realize lowpass filtering is quite simple. Instead of
reconstructing the mesh by using all its eigenvector terms, the ones with the largest correspond-
ing eigenvalues are discarded. Say that the eigenvectors are sorted according to their eigenval-
ues in ascending order. Then lowpass filtering would be performed as follows:

(1.19)

Since lowpass filtering removes high frequencies, the effect on the mesh will be a natural
smoothing.

Figure 1.15: (a): Noisy sphere (1’026 vertices/frequencies). (b): Lowpass filtered mesh
using the 50 lowest frequency terms. (c): Further filtering by taking only 3
of the 50 computed frequencies from (b) into account.

L y λ y=

X αk ek
k 1=

n

∑=

αk X ek,〈 〉 .=

Xlowpass αk ek

k 1=

l

∑ αk ek .
k l 1+=

n

∑+=

(a) (b) (c)
21

1. THE TRIANGLE MESH DEMO PROGRAM
Given the method of mesh frequency decomposition, one might ask why to bother about the
whole smoothing topic any longer, as it seems to be the most intuitive approach from a signal
processing point of view. Well, the considerable problem of mesh frequency decomposition lies
in its numerical instability. Doing an eigenvector/eigenvalue decomposition of the discretized
Laplacian might be appropriate for small mesh sizes, however, with growing vertex number it
becomes time consuming and instable (recall, the discretized Laplacian is represented by a n×n
matrix, where n is the number of vertices). Furthermore, the discretized Laplacians listed in the
previous sections are not symmetric in general, which increases the complexity of the problem.
Still, there is one property which seems to make the task more manageable. As stated in
Section 1.2.8 the discretized Laplacian matrix is generally extremely sparse. This allows to take
some iterative approaches into account concerning the eigenvector/eigenvalue decomposition
of the discretized Laplacian. The Implicitly Restarted Arnoldi Method (IRAM) proved to be
suitable since it efficiently provides approximations of extremal eigenvalues and their corre-
sponding eigenvectors. The basic idea behind IRAM is to orthogonally project the given eigen-
problem onto a subspace, the so called Krylov Subspace, where the projected eigenproblem can
be solved using a QR-algorithm, for instance. Then the computed eigenvectors are back-pro-
jected, forming approximations to the eigenvectors of the original problem (refer to [15] for
details). The drawback of the method is that its focus lies on the ends of the spectrum of eigen-
values, i.e., only the smallest or largest eigenvalues, and hence the corresponding eigenvectors,
are approximated. However, for lowpass filtering this behavior is quite acceptable as the goal is
to concentrate on the low frequencies anyway.

The results shown in Figure 1.15 and 1.16 were achieved using the iterative Arnoldi method.
The experienced computation time proves to be bearable as long as the number of eigenvectors
to approximate is small and the mesh size consists of only a few thousand vertices. However,
for larger meshes the performance drops down significantly. Still, the full eigenvector/eigen-
value decomposition is beaten by lengths.
22

1.2 FAIRING
Although the applied Arnoldi method induces a great deal of efficiency, it sometimes shows
an undesirable behavior. Instead of computing the eigenvectors of the smallest eigenvalues, the
ones of the largest eigenvalues are returned. Restarting the computation once or twice solves the
problem, which leads to the supposition that the random starting vector used by the Arnoldi
method might influence the converging behavior of the algorithm significantly.

Figure 1.16: (a): Original cow mesh (11’610 vertices/frequencies) and lowpass filtered
version using the 150 lowest frequency components (computation time:
~15min on Pentium 4 1.8GHz). (b): Coloring of 6 of the 150 computed fre-
quencies.

(a) (b)
23

1. THE TRIANGLE MESH DEMO PROGRAM
1.2.12 Mesh frequency decomposition – The user interface

Applying the mesh frequency decomposition method is done via the tool bar shown in Figure
1.17. To visualize the computed mesh frequencies, an additional drawing option can be found
in the “Colored Vertices” rendering submenu called “Frequency Mass”.

Figure 1.17: User interface for mesh frequency decomposition.
24

1.2 FAIRING
Decompose the mesh into its frequency components.

Restore the mesh model to the state before frequency decomposition took place.

Choose the method to compute the eigenvalues of the discretized Laplacian (see
Section 1.2.11). Although full eigenvalue/eigenvector decomposition is available,
it is not recommended for use, as the computational costs are high and the numer-
ical behavior is instable. For large meshes the partial eigenvalue/eigenvector de-
composition based on the Arnoldi method does a much better job.

Specify the number of eigenvalues/eigenvectors to approximate (only available
when doing a partial decomposition).

Select which eigenvectors/eigenvalues to approximate (only for partial decompo-
sition). Either the largest or the smallest eigenvalues of the spectrum can be com-
puted. Note that as the discretized Laplacian matrix is asymmetric in general, there
is the theoretical possibility to get complex eigenvalues. Therefore, one can state
whether to search for smallest/largest eigenvalues according to their real part or
their norm.

The frequency bar shows the range of computed and applied eigenvectors. A red
marker indicates the selected frequency for the colored frequency visualization.

The sliders allow to further bound the range of used frequencies for the mesh re-
construction. Taking advantage of this option enables to show the effect of remov-
ing or adding additional frequencies on the mesh surface.

Selection of the frequency to visualize, when frequency coloring is activated in the
rendering menu.

Table 1.4: Description of the frequency decomposition tool bar.
25

1. THE TRIANGLE MESH DEMO PROGRAM
1.3 Subdivision
One of the oldest fields in 3D computer graphics can be found in the context of geometric mode-
ling. Computer-aided design applications early revealed the power and usefulness of fast code
processing units in design and modeling areas and inspired many follow-up products. Nowa-
days, people heavily depend on modeling tools, be it in 3D-model construction and processing
for movies and computer entertainment or in the design and prototyping of real world products.
However, the growing size and complexity of the objects to build soon cried for sophisticated
methods to avoid drowning in the model's sea of vertices and faces. In this context Bézier Pat-
ches and NURBS had a big impact as they provide means to build and control complex surfaces
by a comparatively small number of control points. Their major advantage lies in their offer of
guaranteed smoothness properties concerning the limit surface. Still, for some applications
these approaches hold a significant drawback, since they depend on a surface parametrization.
It might be easy to derive such a parametrization in the case of constructing a virtual landscape,
but turns out to be troublesome when dealing with an object of arbitrary form. Facing this incon-
venience, the connection to the topic of subdivision can be made. It seems to be obvious that
one would happily take advantage of the nice properties of NURBS, for instance, while working
with triangle meshes. However, as mentioned above, finding a natural surface parametrization
for arbitrary triangular meshes is not a simple task at all. Nonetheless, to efficiently create and
process complex triangle meshes, a helping hand offering the comfort of control points might
become essential. Additionally, one would like to make some statements about the smoothness
to expect from the limit surface, in analogy to NURBS2. Both requests will be approached with
subdivision.

2. Pushing the comparison between subdivision and splines, it might be interesting to mention that in fact,
many subdivision schemes are based on generalizations of various spline types.
26

1.3 SUBDIVISION
The idea behind subdivision seems quite simple. Given a coarse triangular mesh, the surface
triangles are subdivided into subtriangles in a refinement step (for example by using the 1-to-4
refinement, as shown in Figure 1.18). Then the vertices are moved according to the so called
subdivision rule which operates on local mesh characteristics only and aims at producing
smooth surfaces. Finally, by repeating these two steps, an increasingly smooth surface is
obtained. However, the real subdivision surface is reached only in the limit of the process. A
prove of smoothness properties can be given for most subdivision surfaces, which justifies their
application from a theoretical point of view as well.

In the following sections the focus will be on different subdivision rules, as they play the key
role in the subdivision process, i.e., the subdivision rules define the properties of the limit sur-
face.

1.3.1 Notation and definitions

The notation used in the subsequent sections is summarized here.

Regular and extraordinary vertices. The topology of mesh vertices plays an important role
in subdivision, therefore two types of vertices are distinguished. In the context of triangu-
lar meshes, regular vertices are those with valency 6 (for interior vertices) and valency 4
(for vertices on the mesh boundary) respectively. All other vertices are considered as
extraordinary. Note that under the refinement step illustrated in Figure 1.18, every newly
created interior vertex will be regular.

Odd and even vertices. As depicted in Figure 1.18, the vertices of the coarser mesh are also
vertices of the refined mesh. For any subdivision level, all new vertices that are created at
that level are called odd vertices. The vertices inherited from the previous level are called
even.

Figure 1.18: 1-to-4 refinement using dyadic splits. (a): Mesh face before refinement step.
(b): Refined mesh face. The new vertices, drawn in red, are called odd, the
old vertices, in dark gray, even.

(a) (b)
27

1. THE TRIANGLE MESH DEMO PROGRAM
1.3.2 Loop subdivision scheme

The Loop subdivision scheme for triangular meshes was proposed by Charles Loop [9]. It pur-
sues an approximating approach, i.e., even vertices will not keep their position throughout the
subdivision process, neither will they be part of the limit surface. The Loop subdivision scheme
is based on the three-directional box spline, consequently one can expect a C2-continuous limit
surface. However, this only holds for regular meshes. At extraordinary points the smoothness
reduces to C1-continuity or even C0-continuity.

As already mentioned, the subdivision rule holds the positioning scheme for the odd and
even vertices after the refinement step. The new coordinates are computed using weight masks
of local range, i.e., linear combinations of neighboring vertex positions. Note that concentrating
on the near neighborhood makes subdivision extremely efficient.

The Loop subdivision rule distinguishes between several cases. There are different subdivi-
sion masks for odd and even vertices as well as for vertices on the boundary. The detailed
masks, illustrating the vertices and their corresponding weights to use for computing the new
positions, are given in Figure 1.19.

Figure 1.19: Subdivision masks for Loop scheme. The vertex xi, marked in red, is the ver-
tex for whom the new position has to be computed. The dark gray vertices
stand for even vertices, the white ones for odd vertices. The dotted lines re-
present the new topology after the refinement step. (a): Mask for odd ver-
tices. (b): Mask for even vertices. In both cases the boundary vertices are
handled separately.

, n is the valency of the vertex xi.

(a) (b)

β 1
n
--- 5

8
--- 3

8
--- 1

4
--- 2π

n
------⎝ ⎠

⎛ ⎞cos+⎝ ⎠
⎛ ⎞ 2

–⎝ ⎠
⎛ ⎞=
28

1.3 SUBDIVISION
The definition of the weight β in Figure 1.19 reveals that it is not fixed, but rather depends
on the valency of the vertex at hand. Therefore, one might consider to precompute and store the
weight for a certain number of valencies to increase the subdivision performance.

The results obtained by applying the Loop subdivision scheme are shown in Figure 1.20. The
visual smoothness of the surface after a few iterations can be easily observed. Simultaneously
an undesirable effect of the Loop scheme gets apparent, the volume of the model shrinks during
the subdivision process. If volume preservation is an issue, one might use the anti-shrinking
approach presented in the section on fairing (Section 1.2.9).

Figure 1.20: Successive subdivision iterations using the Loop subdivision scheme. Star-
ting with 20 vertices, the model complexity rises to 74, 290, 1’154, 4’610
and finally 18’434 vertices.
29

1. THE TRIANGLE MESH DEMO PROGRAM
1.3.3 Modified Butterfly subdivision scheme

In the previously presented subdivision scheme the positions of the even vertices altered in
every subdivision step. As a consequence, the influence of the control points on the resulting
surface remained limited. The Modified Butterfly scheme, dealt with in this section, follows an
interpolating approach, i.e., the even vertices keep their position throughout the subdivision pro-
cess and hence will be part of the limit surface.

The original Butterfly scheme was first proposed by Dyn, Gregory and Levin in [7]. It was
supposed to reach C1-continuity on the complete surface, however, this property only held for
regular3 meshes. To ensure C1-continuity on arbitrary meshes, the extraordinary vertices have
to receive special treatment as shown in [10].

The subdivision mask for the Modified Butterfly scheme is presented in Figure 1.21. Note
that, compared to the Loop subdivision scheme, the local support is larger, i.e., vertices beyond
the 1-ring neighborhood are included.

3. A regular mesh consists of regular vertices alone (see Section 1.3.1).

Figure 1.21: Subdivision masks for Modified Butterfly scheme. The vertex xi, marked in
red, is the vertex for whom the new position has to be computed. The dark
gray vertices stand for even vertices. The dotted lines represent the new to-
pology after the refinement step. (a): Mask for regular vertices (interior and
boundary case). (b): Mask for vertices adjacent to an extraordinary vertex.

, for n > 5;

, , , for n = 4; , , for n = 3.

n is the valency of the extraordinary vertex xk.

(a) (b)

si
1
n
--- 1

4
--- 2 iπ

n
---------⎝ ⎠

⎛ ⎞cos 1
2
--- 4 iπ

n
---------⎝ ⎠

⎛ ⎞cos+ +⎝ ⎠
⎛ ⎞=

s0
3
8
---= s1 3, 0= s2

1
8
---–= s0

5
12
------= s1 2,

1
12
------–=
30

1.3 SUBDIVISION
In analogy to the Loop scheme, it is advisable to precompute the mask weights si, defined in
Figure 1.21, and thus speed up the subdivision process. Note that the presented set of subdivi-
sion masks is not complete. In Figure 1.21(a) the upper mask can face certain conditions under
which some of the vertices weighted by (-1/16) are absent. An easy way to solve the problem is
by reflecting the opposite vertices and use them instead. However, to ensure C1-continuity extra
masks have to be provided in these cases (see [11]).

The effect of the Modified Butterfly subdivision scheme is shown in Figure 1.22. The inter-
polating behavior can be nicely observed. However, interpolation comes at the cost of smooth-
ness, which gets apparent when comparing with the result of the Loop scheme. To catch the
importance of the modification applied to the original Butterfly scheme, Figure 1.23 shows the
effect of not giving special treatment to extraordinary vertices.

Figure 1.22: Successive subdivision iterations using the Modified Butterfly subdivision
scheme. Starting with 20 vertices, the model complexity rises to 74, 290,
1’154, 4’610 and finally 18’434 vertices.

Figure 1.23: T-Shape model after 5 iterations of the original Butterfly subdivision sche-
me. The problem areas around extraordinary vertices, where no C1-conti-
nuity is reached, seem apparent.
31

1. THE TRIANGLE MESH DEMO PROGRAM
1.3.4 Sqrt3-Subdivision scheme

Another interesting subdivision scheme was presented by Kobbelt in [8]. It is called -subdi-
vision and belongs, like the Loop scheme, to the class of approximating schemes. Contrary to
the discussed subdivision schemes so far, the refinement step is not done by using a 1-to-4 split
strategy4. Kobbelt proposed to use a different face dissection which increases the number of
faces by a factor of 3 in every refinement step. This is done by inserting a new vertex for every
face of the given mesh, followed by an edge flipping operation as shown in Figure 1.24. Note
that applying the refinement step twice leads to a 1-to-9 refinement of the original mesh. As this
corresponds to a so called tri-adic split (two new vertices are introduced for every original edge)
the scheme was named -subdivision.

As for all subdivision schemes, the subdivision rule must not be missing, thus it is illustrated
in Figure 1.25. Note that boundary vertices are updated in every second subdivision iteration
only. The given rule was designed such that the -subdivision scheme reaches C2-continuity
on the limit surface except for the regions around extraordinary vertices, where one can expect
C1-continuity.

The alternative refinement rule, which provides a “slower” mesh refinement in contrast to
classical subdivision schemes, makes the -subdivision scheme also well suited for more
sophisticated subdivision methods like locally adaptive refinement. For more information on
that refer to [8].

4. Every triangle face of the mesh is split into 4 subtriangles during a refinement step.

Figure 1.24: Refinement step for the -subdivision scheme. Odd vertices are drawn in
red, even vertices in dark gray. The light dotted lines mark the flipped edges.
(a): Mesh faces before refinement step. (b): For every triangle face a new
vertex is inserted. (c): The edges connecting even vertices are flipped. (d):
After two refinement steps we have a 1-to-9 refinement of the original mesh
faces.

3

3

(a) (b) (c) (d)

3

3

3

32

1.3 SUBDIVISION
Figure 1.25: Subdivision masks for -subdivision scheme. The vertex xi, marked in red,
is the vertex for whom the new position has to be computed. The dark gray
vertices stand for even vertices, the white ones for odd vertices. The dotted
lines represent the new topology after the refinement step. (a): Mask for odd
vertices (interior and boundary case). (b): Mask for even vertices (interior
and boundary case).

, n is the valency of the vertex xi.

(a) (b)

3

αn
1
9
--- 4 2 2π

n
------⎝ ⎠

⎛ ⎞cos–⎝ ⎠
⎛ ⎞=
33

1. THE TRIANGLE MESH DEMO PROGRAM
Results of the -subdivision scheme are given in Figure 1.26. The visual similarity to the
Loop scheme can be observed in every second iteration step. The slower refinement process,
compared to the other subdivision schemes, can be noticed as well.

Figure 1.26: Successive subdivision iterations using the -subdivision scheme. Starting
with 20 vertices, the model complexity rises to 56, 164, 488, 1’460 and fi-
nally 4’376 vertices.

3

3

34

1.3 SUBDIVISION
1.3.5 Subdivision – The user interface

The subdivision methods from the previous sections are implemented in the triangle mesh demo
program and can be tested using the tool bar depicted in Figure 1.27. There is an additional dra-
wing mode to color the mesh refinement process. It is accessible through the “Colored Vertices”
rendering submenu and is named “Subdivision Vertices”.

Figure 1.27: User interface for subdivision.
35

1. THE TRIANGLE MESH DEMO PROGRAM
Choose the subdivision scheme among Loop, Sqrt3, Butterfly and Modified But-
terfly subdivision (see sections 1.3.2, 1.3.3 and 1.3.4).

Specify the number of successive subdivision iterations. Useful to show the devel-
opment of the subdivision process, since all intermediate steps are stored.

Subdivide the triangle mesh.

Show an animated transition between the mesh before and after the performed
subdivision.

Slider to morph between the original and the subdivided mesh by hand.

Table 1.5: Description of the subdivision tool bar.
36

1.4 MESH DECIMATION
1.4 Mesh decimation

The hunger for ever increasing mesh complexity and hence more and more realistic 3D-models
can be observed for years and is reflected in the impressive performance gain of computer gra-
phics hardware so far. However, for real-time or web applications one might face the problem
to reduce the complexity of a given mesh model to ensure acceptable processing rates. Doing
the task by hand seems impractical, thus methods to decimate a mesh, i.e., decrease the number
of faces, have been developed. The main goal, besides pure decimation, is to preserve the ori-
ginal shape as good as possible, which means keeping the introduced error low. Many different
strategies to reduce the mesh complexity have been proposed. Some of them try to remove
appropriate vertices, edges or faces and retriangulate the resulting hole in the mesh using fewer
triangle faces. Others merge vertices of a mesh model using spatial binning. A very popular idea
considers collapsing edges according to assigned weights (see Figure 1.28). The nice properties
of this approach lie in the rather simple setting, the efficient data structure to represent the deci-
mation procedure, the reversibility of the process using so called vertex splits and the “modest”
impact of a single edge collapse on the whole mesh. Furthermore, a decimation scheme based
on edge collapses can be quite easily extended to support features like geomorphs5 between dif-
ferent decimation degrees of a model, mesh compression or selective mesh refinement. The
mesh decimation process using edge collapses leads to the notion of a progressive mesh, which
builds the model of the decimation method implemented in the triangle mesh demo program as
well.

As mentioned above, the edge collapse method assigns weights to every edge. These weights
are subsequently used to build a priority queue, indicating which of the edges should be col-
lapsed first. Intuitively it seems clear that the weights somehow have to indicate the error which
is introduced, when collapsing the corresponding edge. The function which computes the edge
weights will be referred to as cost function. Needless to say that the result of the decimation pro-
cess will heavily depend on how this cost function is chosen. Many different cost functions were
proposed so far, all with their own place on the line marking the trade-off between quality and
efficiency. The following sections will present a couple of cost functions and illustrate their
effects on the decimation process.

5. A smooth visual transition between two meshes.

Figure 1.28: (a): Mesh before edge collapse. (b): Mesh after edge collapse.

(a) (b)
37

1. THE TRIANGLE MESH DEMO PROGRAM
1.4.1 Quadric error metric

The quadric error metric uses a heuristic to characterize the geometric error induced by an edge
collapse. A symmetric 4×4 matrix Qi is assigned to every vertex vi and defines the induced error
∆(vi) as:

(1.20)

Please note that the mesh vertices vi are defined in homogeneous coordinates, i.e., the vertex
xi = (xix, xiy, xiz)T becomes vi = (xix, xiy, xiz, 1)T. The matrix Qi is built such that the error ∆(vi)
represents the sum of squared distances to some planes p:

(1.21)

(1.22)

The planes p = (a, b, c, d)T, defined by the equation ax + by + cz + d = 0, are initially chosen
to coincide with the triangle faces adjacent to the vertex vi. Consequently the starting error esti-
mate will be 0.

The cost of collapsing an edge eij connecting vertex vi with vj is now given by:

(1.23)

where denotes the vertex the edge is collapsed to.

∆ vi() vi
T Qi vi .=

∆ vi() pT vi()2

p planes vi()∈
∑=

Qi pT p .
p planes vi()∈

∑=

∆ eij() v T Qi Qj+() v=

v

38

1.4 MESH DECIMATION
The quadric error metric provides a quite good error measure for edge collapses. Further-
more, it can be computed very fast, which is an important property, especially when dealing
with large triangle meshes. Visual proof of the quality using the error quadrics approach is given
in Figure 1.29, where even at a high edge collapse degree, the overall shape of the original mesh
is nicely preserved.

Figure 1.29: Decimation of triangle mesh using quadric error metric. The initial model,
consisting of 28’264 vertices, is decimated by successive iterations, leading
to a complexity reduction down to 11’306, 4’523, 1’810, 725 and finally
291 vertices. In every step 60% of all edges were collapsed.
39

1. THE TRIANGLE MESH DEMO PROGRAM
1.4.2 Roundness

One might weight an edge collapse according to the shape of the triangles affected by the col-
lapse. A desirable property for those triangles might be that they should not be degenerate. The
triangle roundness criteria introduces such a measure, i.e., it quantifies the deviation of a tri-
angle from an ideal equilateral triangle. This is done by dividing the radius of the circumference
by the length of the shortest edge of the triangle (see Figure 1.30). Let R denote the above men-
tioned measure, then we get the normalized roundness of a triangle by building the ratio bet-
ween the smallest possible R value and the one obtained from the triangle under consideration.
Minimal is achieved in the case of an equilateral triangle.

To weight an edge collapse, the situation after the collapse has to be considered and the nor-
malized roundness of all affected triangles must be computed and compared. The smallest
roundness value is assigned to the edge collapse as weighting term, then decimation is done by
performing the edge collapses with largest weights first.

Figure 1.30: Roundness criteria

R 1 3⁄=

R rc emin⁄=
40

1.4 MESH DECIMATION
The quality of roundness based mesh decimation is visualized in Figure 1.31. Despite a lower
decimation degree, normalized roundness performs poorly compared to the quadric error metric
approach. However, as to computational speed, the roundness criteria is undefeated.

Figure 1.31: Decimation of triangle mesh using normalized roundness criteria. The initi-
al model, consisting of 28’264 vertices, is decimated by successive iterati-
ons, leading to a complexity reduction down to 19’785, 13’850, 9’696,
6’788 and finally 4’752 vertices. In every step 30% of all edges were col-
lapsed.
41

1. THE TRIANGLE MESH DEMO PROGRAM
1.4.3 Binary constraints

In addition to the use of cost functions to prioritize edge collapses, binary constraints might be
taken into consideration. As opposed to weights on edge collapses, binary constraints act much
more restrictive, i.e., they define whether an edge collapse is legal or not. If an edge collapse
turns out to be illegal, it will not be performed. Thus binary constraints may help to avoid
unwanted constellations on the mesh surface, mostly at the expense of decimation degree. A
common approach for binary constraints is the combination of a cost function with a threshold.
Hence, if the cost of an edge collapse exceeds a certain threshold, it is marked as illegal and the-
refore omitted. The triangle mesh demo program offers two binary constraints of this kind as
well as a third one, which follows a different approach. These three binary constraints are dis-
cussed below.

Roundness
As one might infer from the name, this binary constraint is based on the roundness criteria
from the previous section and is modified only by including a threshold to classify an edge
collapse as legal or illegal.

Normal Flipping
To decide whether a certain edge collapse shall be permitted, the normals of the affected
faces before and after the collapse are compared. If the angle between two such face normals
exceeds a predefined value, the edge collapse will not be performed. In the triangle mesh
demo program the threshold angle was set to 90 degrees.

Independent Set
A very simple approach, which does without any kind of cost function, is given by the inde-
pendent set binary constraint. After every collapse, the 1-ring neighborhood of the remaining
vertex is locked, i.e., the corresponding vertices are marked to be unfit for participating in
edge collapses. If an edge has a locked vertex, it will not be considered for a collapse any-
more. Of course, this constraint is extremely restrictive and will not allow a high degree of
mesh decimation.

The above listed binary constraints might seem useful at first glance, however, their influ-
ence on the quality of the decimation result is quite limited in practice. While the independent
set constraint is to restrictive, one has to deal with finding appropriate thresholds for roundness
or normal flipping.
42

1.4 MESH DECIMATION
1.4.4 Mesh decimation – The user interface

Figure 1.32 shows the user interface for the mesh decimation methods. Actions can be taken
using the corresponding tool bar of the mesh demo program application window. Consider that
there is an additional rendering option to visualize the collapsing edges of the decimation pro-
cess. It can be found in the “Draw Vectors” rendering submenu under the entry “Collapsing
Edges”.

Figure 1.32: User interface for mesh decimation. Visualization of collapsing edges on the
mesh model is activated.
43

1. THE TRIANGLE MESH DEMO PROGRAM
Selection of the edge collapse cost function. The available options are the quadric
error metric (“Quadrics”) and the roundness criteria (“Roundness”) (see sections
1.4.1 and 1.4.2).

Enable/disable the corresponding binary constraints on edge collapses (see
Section 1.4.3).

Set the percentage of edges to collapse in every iteration.

Specify the number of eigenvalues/eigenvectors to approximate (only available
when doing a partial decomposition).

Decimate the triangle mesh.

Show an animated transition between the mesh before and after the decimation
step.

Slider to morph between the original and the decimated mesh by hand.

Table 1.6: Description of the mesh decimation tool bar.
44

1.5 TECHNICAL DETAILS
1.5 Technical details
The triangle mesh demo program was written in C++ and developed with Microsoft Visual
Studio .Net 2003. For the user interface design and implementation Trolltech's Qt library was
used, the 3D visualization is based on OpenGL. The data structure to deal with triangular
meshes was provided by OpenMesh, a very powerful and flexible tool, which already offered
some of the subdivision algorithms and a couple of mesh decimation modules too. OpenMesh
was developed by the Computer Graphics Group at the RWTH Aachen. Last but not least, the
GNU Scientific Library, the Linear Algebra Package and the Arnoldi Package served as tools
for algebraic computations.

The demo program runs under Windows XP, however, since the core libraries are operating
system independent and available for other platforms, it should not be too hard building the
demo program under Linux, for example.
45

1. THE TRIANGLE MESH DEMO PROGRAM
46

AReferences

[1] M. Desbrun, M. Meyer, P. Schröder, and A. Barr. “Implicit Fairing of Irregular Meshes
using Diffusion and Curvature Flow.” SIGGRAPH 99, p.317-324, 1999.

[2] I. Guskov, W. Sweldens, and P. Schröder. “Multiresolution Signal Processing for Mes-
hes.” SIGGRAPH 99, p.325-334, 1999.

[3] G. Taubin. “A Signal Processing Approach to Fair Surface Design.” SIGGRAPH 95,
p.351–358, 1995.

[4] I. Guskov. “Multivariate Subdivision Schemes and Divided Differences.” Tech. rep.,
Department of Mathematics, Princeton University, 1998.

[5] M. H. Gross and A. Hubeli. “Eigenmeshes.” Technical Report No. 338, Computer Sci-
ence Department, ETH Zürich, 2000.

[6] M. Alexa. “Wiener Filtering of Meshes.” Proceedings of the Shape Modeling Internatio-
nal 2002, p.51, 2002

[7] N. Dyn, D. Levin, and J. A. Gregory. “A Butterfly Subdivision Scheme for Surface Inter-
polation with Tension Control.” ACM Trans. Gr. 9, 2 (April 1990), p.160–169.

[8] L. Kobbelt. “ -Subdivision.” Computer Graphics Proceedings, Annual Conference
Series, 2000.

[9] C. Loop. “Smooth Subdivision Surfaces Based on Triangles.” Master’s thesis, University
of Utah, Department of Mathematics, 1987.

[10] D. Zorin, P. Schröder, and W. Sweldens. “Interpolating Subdivision for Meshes with
Arbitrary Topology.” Computer Graphics Proceedings (SIGGRAPH 96), p.189–192,
1996.

[11] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldens. “Subdivision
for Modeling and Animation.” Course Notes (SIGGRAPH 2000).

[12] H. Hoppe. “Progressive Meshes.” SIGGRAPH 96, p.99–108, 1996.

[13] M. Garland and P. S. Heckbert. “Surface Simplification Using Quadric Error Metrics.”
SIGGRAPH 97, p.209–216, 1997.

3

47

A. REFERENCES
[14] E. W. Weisstein et al. “Biconjugate Gradient Method.” MathWorld, Wolfram Web
Resource. http://mathworld.wolfram.com/BiconjugateGradientMethod.html

[15] D.C. Sorensen. “Implicitly restarted Arnoldi/Lanczos Methods for Large Scale Eigenva-
lue Calculations.”, In D. E. Keyes, A. Sameh, and V. Venkatakrishnan, eds. Parallel
Numerical Algorithms, pages 119-166, Dordrecht, 1997, Kluwer.

[16] R. B. Lehoucq, D. C. Sorensen, C. Yang. “ARPACK Users’ Guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.” SIAM: Philadel-
phia, PA, 1998.

[17] Arnoldi Package, http://www.caam.rice.edu/software/ARPACK/

[18] C-version of the Linear Algebra Package, http://www.netlib.org/clapack/
48

	Improving a demo program for triangle meshes
	The triangle mesh demo program
	1.1 The user interface - General description
	Figure 1.1: The triangle mesh demo program user interface. Dragon model with vertex normal coloring.
	Table 1.1: Description of the triangle mesh demo program menus.
	Table 1.2: Special keys.

	1.2 Fairing
	1.2.1 Notation and definitions
	(1.1)
	(1.2)

	1.2.2 Mesh frequencies
	1.2.3 Diffusion equation
	(1.3)
	(1.4)

	1.2.4 Umbrella operator
	(1.5)
	(1.6)
	Figure 1.2: (a): Noisy sphere (1’026 vertices), flat-shaded and with colored mean cur vature. (b): Smoothed version after 8 iterations of the umbrella operator. High fluctuations in mean curvature vanish. (c): Noisy head (17’358 ver tices). (...
	Figure 1.3: Vertex drift using the umbrella operator. (a): 3 smoothing iterations on the sphere model. The regularization tendency of the umbrella operator can be observed, especially in the marked area. (b): 3 smoothing iterations on the hea...

	1.2.5 Improved umbrella operator
	(1.7)
	Figure 1.4: (a): Noisy sphere (1’026 vertices), flat-shaded. (b): Smoothed version after 1 iteration of the improved umbrella operator using an integration step size of 1.0. The colored image visualizes smoothing distances. (c): Noisy head (1...
	Figure 1.5: Vertex drift using the improved umbrella operator. (a): 1 smoothing iterati on on the sphere model. The improved umbrella operator still shows the un desirable regularization behavior in the marked area. (b): 1 smoothing iteration...

	1.2.6 Curvature flow
	(1.8)
	(1.9)
	Figure 1.6: Illustration of curvature flow operator.
	Figure 1.7: (a): Noisy sphere (1’026 vertices), flat-shaded. (b): Smoothed version after 8 iterations of the curvature flow operator. (c): Noisy head (17’358 ver tices). (d): Smoothed version after 2 iterations of the curvature flow opera tor...
	Figure 1.8: No vertex drift using the curvature flow operator. (a): 5 smoothing iterations on the sphere model. The curvature flow operator does not touch the under lying parametrization, the vertices “stay” in place. (b): 5 smoothing iterati...

	1.2.7 Second order difference operator
	Figure 1.9: Second order difference .
	(1.10)
	(1.11)
	(1.12)
	Figure 1.10: (a): Noisy sphere (1’026 vertices), flat-shaded. (b): Smoothed version after 8 iterations of the second order difference operator. (c): Noisy head (17’358 vertices). (d): Smoothed version after 2 iterations of the second order di...
	Figure 1.11: As with the curvature flow operator, no drifting vertices can be found using the second order difference approach. (a): 5 smoothing iterations on the sphere model. (b): 10 smoothing iterations on the head model. Almost no texture distortion.

	1.2.8 Implicit fairing
	Figure 1.12: (a): Bunny model (35’947 vertices), flat-shaded. (b): Instability of explicit integration scheme for step size 20.0. For the single smoothing iteration the umbrella operator was used. (c): Implicit integration scheme. The same in...
	(1.13)
	(1.14)

	1.2.9 Volume preserving, anti-shrinking fairing
	Figure 1.13: (a): Noisy sphere (1’026 vertices), Gouraud shading. (b): Smoothed version without volume preservation. The improved umbrella operator together with the implicit integration scheme was used. The integration step size was set to 1...
	(1.15)

	1.2.10 Fairing - The user interface
	Figure 1.14: User interface for fairing.
	Table 1.3: Description of the fairing tool bar.

	1.2.11 Mesh frequency decomposition
	(1.16)
	(1.17)
	(1.18)
	(1.19)
	Figure 1.15: (a): Noisy sphere (1’026 vertices/frequencies). (b): Lowpass filtered mesh using the 50 lowest frequency terms. (c): Further filtering by taking only 3 of the 50 computed frequencies from (b) into account.
	Figure 1.16: (a): Original cow mesh (11’610 vertices/frequencies) and lowpass filtered version using the 150 lowest frequency components (computation time: ~15min on Pentium 4 1.8GHz). (b): Coloring of 6 of the 150 computed fre quencies.

	1.2.12 Mesh frequency decomposition - The user interface
	Figure 1.17: User interface for mesh frequency decomposition.
	Table 1.4: Description of the frequency decomposition tool bar.

	1.3 Subdivision
	Figure 1.18: 1-to-4 refinement using dyadic splits. (a): Mesh face before refinement step. (b): Refined mesh face. The new vertices, drawn in red, are called odd, the old vertices, in dark gray, even.
	1.3.1 Notation and definitions
	1.3.2 Loop subdivision scheme
	Figure 1.19: Subdivision masks for Loop scheme. The vertex xi, marked in red, is the ver tex for whom the new position has to be computed. The dark gray vertices stand for even vertices, the white ones for odd vertices. The dotted lines re pr...
	Figure 1.20: Successive subdivision iterations using the Loop subdivision scheme. Star ting with 20 vertices, the model complexity rises to 74, 290, 1’154, 4’610 and finally 18’434 vertices.

	1.3.3 Modified Butterfly subdivision scheme
	Figure 1.21: Subdivision masks for Modified Butterfly scheme. The vertex xi, marked in red, is the vertex for whom the new position has to be computed. The dark gray vertices stand for even vertices. The dotted lines represent the new to polo...
	Figure 1.22: Successive subdivision iterations using the Modified Butterfly subdivision scheme. Starting with 20 vertices, the model complexity rises to 74, 290, 1’154, 4’610 and finally 18’434 vertices.
	Figure 1.23: T-Shape model after 5 iterations of the original Butterfly subdivision sche me. The problem areas around extraordinary vertices, where no C1-conti nuity is reached, seem apparent.

	1.3.4 Sqrt3-Subdivision scheme
	Figure 1.24: Refinement step for the -subdivision scheme. Odd vertices are drawn in red, even vertices in dark gray. The light dotted lines mark the flipped edges. (a): Mesh faces before refinement step. (b): For every triangle face a new ver...
	Figure 1.25: Subdivision masks for -subdivision scheme. The vertex xi, marked in red, is the vertex for whom the new position has to be computed. The dark gray vertices stand for even vertices, the white ones for odd vertices. The dotted line...
	Figure 1.26: Successive subdivision iterations using the -subdivision scheme. Starting with 20 vertices, the model complexity rises to 56, 164, 488, 1’460 and fi nally 4’376 vertices.

	1.3.5 Subdivision - The user interface
	Figure 1.27: User interface for subdivision.
	Table 1.5: Description of the subdivision tool bar.

	1.4 Mesh decimation
	Figure 1.28: (a): Mesh before edge collapse. (b): Mesh after edge collapse.
	1.4.1 Quadric error metric
	(1.20)
	(1.21)
	(1.22)
	(1.23)
	Figure 1.29: Decimation of triangle mesh using quadric error metric. The initial model, consisting of 28’264 vertices, is decimated by successive iterations, leading to a complexity reduction down to 11’306, 4’523, 1’810, 725 and finally 291 ...

	1.4.2 Roundness
	Figure 1.30: Roundness criteria
	Figure 1.31: Decimation of triangle mesh using normalized roundness criteria. The initi al model, consisting of 28’264 vertices, is decimated by successive iterati ons, leading to a complexity reduction down to 19’785, 13’850, 9’696, 6’788 an...

	1.4.3 Binary constraints
	1.4.4 Mesh decimation - The user interface
	Figure 1.32: User interface for mesh decimation. Visualization of collapsing edges on the mesh model is activated.
	Table 1.6: Description of the mesh decimation tool bar.

	1.5 Technical details

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

