EFFICIENT GENERATION OF
MOTION TRANSITIONS USING
SPACETIME CONSTRAINTS

Discussion based on [RGBC96]
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1 PROBLEM DISSECTION

1.1 Introduction

Imagine having a database consisting of a set of basic motions of a human body model (the authors of [RGBC96] relied on soccer
motions). From the motion capturing process, the segments will usually be short and each one independent from the ather. But th
wish might come up tooncatenatewo arbitrary motion sequences, formingampositamotion. And that’s what this discussion is

all about: thegeneration of motion transition&or an adequate illustration of the problem, take a look at figure 1-a.

user interaction agt reaction atit

]

~fun® I 2 Jump* I

v

figure 1-a

1.2 Formal description

From the above stated introduction, one can pass over to a formal description:

motionTransition = { i | q(t)=g(b.1,...,am) O ()= O g(tz)=0n }, (1)

with

ai(the I" joint angle function,

bi; the parameters of the angle base function,

g(the angle base function,

AQE(Qu(DL...,cn(D) the vector of all joint angle functions,

Qo the value of () at b and

a: the value of () at t.

Obviously, (1) is a set with an infinite cardinality and so there is an arbitrary number of solutions to the problem. atoapplic
thus needs to generate a subset of (1).

2 SOLUTION DUE TO [RGBC96]

The authors of [RGBC96] restrict their algorithm to the set

motionTransitioReeces = { motionTransition | e~ min }. Q)
Theenergy functiore is given as

tl
e::J'ZtiZdt @)
t
with the torque Ti in joint i. That is: it computes the motion transition that requires the least energy, which is a formidable
minimization task and is done bygaadient basednethod (,BFGS"* [GMW8L1]). The authors remark thakperience has shown

that motion that minimizes energy looks nattiral

Angle functions are represented from a cubic B-spline basis as they have, for the generated short transitiommodhown
convergence properties. The use of B-spline wavlets has been taken into consideration but been rejected from the large number o
basis functions in a single degree of freedom. On the other hand, five to ten B-spline coefficients suffice to repreggitarthe an
position.
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The problem of finding the required torque is known asinkierse dynamics problef8a91]. A solution according to [LWP80]
serves as basic algorithm. From its vectorial form, [Ba91] preserttbarial version which has actually been implemented and
allows the computation of all unknowns with less computation effort from elegant Cartesian tensor identities.

2.1 Motion representation

To make the user able to manipulate motions, break it into pieces and to reassemble it into new, more complex mutimms, a
expression languagleas been defined. Let its application be explained from the example of combining an arm wave with a walk
motion. The walk motion defines all degrees of freedom of the body model, whereas the arm wave does so for an arm only.
Graphically, one might sketch the situation as follows, with filled bars denoting defined degrees of freedom:

wave

walk

time

Affine transformationsllow to move the wave motion in time:
affinel(wave)

Now the arm’s degrees of freedom need to be undefined since they are fixed from the walk motion. For that pungoss, the
operatoris provided.

walk - affing(wave)

Now theaddition of a newly transformed wave with the modified walk motion offers two transition gaps which can be filled by the
generation of a motion transition:

walk - affing(wave) + affing(wave)

So the total resulting motion can symbolically be described as
SP(walk - affing(wave) + affine(wave))

with ,SP* denoting the spacetime optimization. Motions are represented as a hierarchy of motion expressions. Motion expressions
can be one of three types of objects: intervals, degrees of freedom (DOF) and motion units (MU). An interval is just a list of
function values, whereas a DOF is a list of intervals which defines the degree of freedom of a joint for example forrgn arbitra
time. Finally, a motion unit is just an array of DOF's to describe m degrees of freedom of a body. In pseudo-BNF notation, thes
expressions can be stated as follows:

interval = (f(0),...,f(tr-2),to,tn-2) | €
DOF = interval | DOF, intervalg|
MU = array m OF DOF

3 THE RESULTS OF THE [RGBC96] APPROACH

From the authors of [RGBC96], we get the following statement about the usefulness of their algorithm:
» The results of using our system to generate animations starting from a base library of soccer motions are duite good.

On the other hand, the generation of 0.6 seconds motion transition with a body model of 44 degrees of freedom takesor? seconds

a 100 MHz Pentium. From that, the aim of interactivity has been missed. But one must say that the generated motions can be
stored as persistent objects and from that be cached. The authors plan to extend their motion model to more accuragly model th
dynamics of the human body model since its is still not accurafeetobody motion



4 MOTIVATION OF THE ENERGY MINIMIZATION APPROACH [RGBC96]

4.1 Linear interpolation

| want to motivate the energy minimization approach [RGBC96] from a simple example. Imagine having the body model and
border conditions as shown by figure 4-a.

Border conditions:

e Gulto) =0 u(ty) := " - .’
W) =0 alt) =0
ate) =0 a(t) =0

figure 4-a figure 4-b

For the sake of simplicity, | neglect all influences of gravitation. A trivial approach is interpolation. Interpolating linearl
results in the ,motion“ depicted by figure 4-b. From the border conditions, we have

lim a(t) =+, 1)
t-to

and thus this technique proves insufficient. The example will serve as demonstration body model in a subsequent section and it
will be shown, that the minimization of the required total energy makes the motion look ,natural.

5 PROPOSED ALGORITHMS

5.1 Root motion

From the aspect of user interaction, the authors have chosen a straight forward way to implement the creature’s rootemotion. Th
root’s position for a time intervaldti] is computed from

_ (80 to 8
X(t) = x(to) +tJ;§_/(to)E|1 %ﬂa : (1)

a-tyd a
00+ v(ty)
ty —toO t

1~ 1o

From the vectorial velocity v given at discrete timeand t, (1) gives the position vecto(tx from linear interpolation in velocity.
Obviously, (1) induces a'®ath. A & motion could be obtained from interpolating linearly in the root motiantsleration (1)
is explicitly solved as

S Gt R G OIS (o S (S
X0 = Wttt -2 v B @
O O

15 y(tZ) 1 y(tO)

0 05 1 15\_2/25 3 y(tl)
05

figure 5-a

figure 5-b




As an example, consider the scenario of figure 5-b whose speed vectors have been defined a¥)(®E{L=("/2-"2) and
v(15):=(0,1). What motion will result? From (2), one gets the composed root’s motion (with initial condit{@):#¢010)) as

e T (t 0[0,10)
rOOt(t)= 40 2 20
oY= 3 1, 7. 3, '
22 e =2 - L1+ 2424200 (t0[1019)
2 2 20 20 20

)

3
whose graph is shown by figure 5-a.

5.2 Kinematic constraints

Any realistic visualization of human body motion lives from cinematic constraints. Aspects condexgrgg kinematics are
considered from having a body model as dynamic chains starting at the root and ending at tips. From that, limbs aredtept togeth
from the specific motions computed from joint angle functions. A kinematic constraint could be the restriction to fix gasrtain

of the body at its place , e.g. a foot on the floor. Such points can be foundtagdhat are (almost) at the same place at the

start and the end of the motion transition time interval and we designate tltemst&rsined coordinate frameBut one needs to

notice that those cannot be held at the desired position in any case, as figure 5-c shows: the given root motion prevents from
keeping the constrained frame on the floor. When denoting the Euclidean length of the difference vector between desired and
actual position as

w(® = o, -5, (0] . ®
- =k 7li2
kinematic constraints degenerate to the minimization of the total deviation R over the entire time interval:
4K
R::J’Z n (t)dt. (2
t0k=1

Note that the minimization of (2) merely influences shipport limbas it can be seen from figure 5-c.

root motion

constrained frame

figure 5-c

5.3 Motion cyclification

Motion cyclificationis a special case of motion transition generation which aims to concatenate a given motion with itself. From
the fact that the motion will oftenly be of cyclic nature (think of a walking person), this problem is treated with lesés#ort
example, let me here explain the application of the proposed algorithm on a single (scalar) angle function f(t) such &s shown b
figure 5-d.

0.2 -2 -1 1] 1 2
W

5 o o «\/«5 figure 5-e

figure 5-d




Let's say the ,motion” starts a$ and finishes at.t These two times are usually be defined by the user. The authors of [RGBC96]
now define the connection intervaisahd | each as to be one fifth of the entire length:

ls= [ts,ts+5 (t-tr)] )
e = [t-5"(t-tr), . )
The approach is now to solve the minimization problem
minfla- , 3
minla- 1, @
O

with a=[f(t),...,"(to)] " and_&=[f(ts),... [ (t)]". For n=0, one gets to

min|f (to) =f (t1)] 4
toOsg
O

(minimization of difference in function values) which obviously has the solutisr™ ti=""1¢} for the example of figure 4-d. The
result is shown by figure 5-e: the encountered discontinuity is removed by distributing the error lineariytfvas fhe depicted
lines show. Their superposition is given by figure 5-g.

1 1
0.8 0.8
0.6 06
4 0.4
° 0.2
0.2 0
- 0 ) i 2 3 = = 5 5 =
figure 5-f figure 5-g
For n=1, one needs to solve
miny/(f () =1 ()" + (€)= € 9)° (5)
Ot's

O

The minimum is now obtained foroft-/10,t:="/2}. This leads to the more pleasant cyclified motion shown by figure 5-f. Note that

the derivative fits by ,accident, since nothing has been done to make the derivative continuous. The authors of [RGBC96] use a
least squares cyclic B-spline approximation to construé mdEion curve. As mentioned, one can even advance by considering f's
higher derivatives.

5.3.1 Maple source text

# Motion cyclification by difference minimization (chk 97) P2new := plot( f(x)+g(x), x=start..finish, color=red):

with( plots): P3new := plot( f(x-(finish-start))+g(x-(finish-start)), x=finish..2*finish-start):
fi= t->t"3-2*t"2+1; display( {P1,P2,P3,P1new,P2new,P3new});

t[s] := -1/2: {[f] := 3/2: # Considering f and df/dt:

a = t[s] + 1/5*(t[f]-t[s]): b :=t[f] - 1/5*(t[f]-t[s]): start ;= a: finish := t[f]:

plot( f(x), x=t[s]..t[f]); A := -(f(finish)-f(start))/(finish-start):

# Considering only f. g := x->evalf(A)*x - start*A:

start := t[s]: finish := b: P1 := plot( f(x+(finish-start)), x=start-(finish-start)..start):

A := -(f(finish)-f(start))/(finish-start): P1plus := plot( g(x+(finish-start)), x=start-(finish-start)..start, color=red):

g = x->evalf(A)*x - start*A: P2 := plot( f(x), x=start..finish):

P1 := plot( f(x+(finish-start)), x=start-(finish-start)..start): P2plus := plot( g(x), x=start..finish, color=red):

P1plus := plot( g(x+(finish-start)), x=start-(finish-start)..start, color=red): P3 := plot( f(x-(finish-start)), x=finish..2*finish-start):

P2 := plot( f(x), x=start..finish): P3plus := plot( g(x-(finish-start)), x=finish..2*finish-start, color=red):
P2plus := plot( g(x), x=start..finish, color=red): display( {P1,P1plus,P2,P2plus,P3,P3plus});

P3 := plot( f(x-(finish-start)), x=finish..2*finish-start): Plnew := plot( f(x+(finish-start))+g(x+(finish-start)), x=start-(finish-start)..start):
P3plus := plot( g(x-(finish-start)), x=finish..2*finish-start, color=red): P2new := plot( f(x)+g(x), x=start..finish, color=red):

display( {P1,P1plus,P2,P2plus,P3,P3plus}); P3new := plot( f(x-(finish-start))+g(x-(finish-start)), x=finish..2*finish-start):
P1new := plot( f(x+(finish-start))+g(x+(finish-start)), x=start-(finish-start)..start): display( {P1,P2,P3,P1new,P2new,P3new});

5.4 The inverse dynamics problem (IDP) due to [Ba,LWP]

Due to [Ba91], thenverse dynamics probler task of finding a generalized force vectofrom a givenmotion trajectoryof a
body model. Formally, it can be described as

7=f(9,0,9). @

The dual problem (that is: finding the induced motion from all forces acting on the model) is cafiedvird or direct dynamics
problem The following sections state the recursive algorithm due to [LWP80] which proceeds in two steps:



a) Propagation of velocities, accelerations and moments from root tfotipard dynamics equations)
b) Computation of total forces and torque from tips to rbatkwarddynamics equations)

From that, an algorithmic formulation of the process could be stated as

PROCEDURE IDP( me : root); | joint rotation
BEGIN _ _ 3 . Forward dynamics

forwardDynamicsEquations(me); ; : equations

FOR all successors s of me DO IDP(s) END; : | angular velocity I

backwardDynamicsEquations(me) :
ENDIDP;, v
The casual context of the computed variables is shown by figure 54h. ItI forces, momentsl
also depicts the separation into forward and backward dynamics | Y
equations. :

| torque
: v . Reverse dynamics
5.4.1 Notation and definitions 5 ; equations
From the hierarchical property of the body model, notation quigkly | energy I
becomes confusing. SEEEEEEEEEEEEEEEEEEEEE :
ithrespectto i -
VeCtoryiiiching figure 5-h

The usage of sub- and superscripts has just been demonstrated. Further, an index i+ denotes the link one position facther from
as link i, whereas i- does the same in the reversed way (closer to the root). To express the vector product as a miaafiomultipl
thedual operator needs to be introduced which is, for a vector u given as

(0H D0 -uz 410
U=duafifp=pu2 0 -40p @)
20 Hdul 4yq o H

It assigns a vector a skew-symmetric Cartesian tensor of second order [Ba91]. One easily recognizes that the identity

uxv=1uly )

is valid. This is the primary relationship of the algorithm’'s vectorial to the tensorial version. Alsogttia tensorabout the
center of mass can be written as

|(_: = _Imifdm (3)

with r denoting the position vector of the infinitesimal mass element ,dm*.

5.4.2 Link parameters (simplified)

x[1]

v

x[0]
figure 5] figure 5-i
The figure 5-j shows an arbitrary link i within the dynamic chain. Rotation axis’ are visualized by the vertical cylinders. Fro

above made definitions, the coordinate transformatiprofAcoordinates with respect to theieoordinate frame to the"i
coordinate frame can be written as the subsequent execution of a rotation and a translation [Ba91]:

* with respect to the dynamic chain



A" = Rot(z,q+); Trans(xa); 1)

(1) reminds us of homogeneous coordinate transformations and the maisiinAact from figure 5-i trivially obtained as

E‘:OSQH) _SinQH) 0 30
_in@.) costs) 0 0F

A”'B 0 0 1 o%‘ 2)
0 0 0 0 1[|

The reader is referred to [Ba91] for a more generalized treatise (such as prismatic joints or arbitrary axis directiompiof the
Further, for some reasons that will become obvious later, when the body model includes no prismatic joints, only thearbtation p
of Aix must be considered.

5.4.3 Involved symbols and semantics

The figure 5-k summarizes the introduced notation with all relevant symbols used in the algorithm. Variables concernéng e.g. th
center of mass haven been placed in the box nearby it.

T torquein joint i
Z jointaxisi
w angular velocity of f link

R T - Q'C(_ angular acceleration tensétlink
=l

O [ik force vector exerted on link i by i-1

LAY i
kK ok gk k
A . G Egi Jgi Igi Mgi
I G center of mass of th& iink

link i mi  mass of the'l link
E'é_ force vector acting on ¢
=i

nik moment vector exerted on link i by i-1

1';_ inertia tensor of the"iframe aboutic
=i
. " M¥ moment vector about ¢

=i

° + :]Ié. Euler’s inertia tensor about ¢

link j

r 3

figure 5-k

5.4.4 Border conditions of the example motion: the polynominal basis approach

16 ,—Lx
1.4
1.2

0.8
0.6
0.4

0.z

0b 02 04 N 06 og 1

figure 5-I

figure 5-m




The ,motion” introduced by figure 4-b lacks a continuous acceleration. | therefore set up an angle function of the forny shown b
figure 5-1. From the border conditions, Maple calculates the polynomial

Cu(t) = -iEf + /(mt? (1)
This results in rotational position as shown by figure 5-m. The second angle fun¢fida gbviously ¢(t) = 0. In the following

sections, in parallel with the explanation of the dynamics equations, their effect to the example body model of figureb®&m will
observed, whose static conditions are given by

1. root motion..............c........ w, 8(t):c_i)8(t):[0 0 qT,'_Sg’O(t):[O 0 qT
2. JOINt AXIS" +vvrrveeereeeereerrens Z(=za0=2(9=[0 0 1
3. joint 1engths.........ccccco. $:=[0 0 . s,=[a 0 d:=[1 0 ¢ . £,=[a 0 d:=[v2 0 {

4. limbs’ center of mass....... Li,l :§‘2/2:[1/ 2 0 qT, [;2 :_§13/2 :[1/ 4 0 qT
[oscmd® +3201d?%) - sinfrd+ 3 20rd2%) 0J [£osQ) - sinQ) OO
5. coordinate transformation A = E;sin(—n[lt3 +3/201@%) costmd®+ 3 20m?) (E,Az = E§in(0) cosQ) OB
B 0 0 H Ho o

B. MASS ...uiiviieieiieeeiee i, 1Ml m:=1/2

5.4.5 Forward dynamics equations

In the following, theforward dynamics equations are explained. The absolute angular velocity 8f ¢herdlinate frame is given
by the (transformed) rotation induced by the previous coordinate system plus the change in i+'s joint angle function q

- - — T
Wl =A, AN w(t) = [o 0 -3ri2+ 3En[n]
%/_/
linki joint rotation link i+

w2 (1) -[0 0 -3r2+ 3‘[[1]]T
2\~
he next formula is obtained by calculating the derivative:

@7 = AL | @+ xZ1G [+ 27, olm=[o0 o -erd+ 3]

@i =[o 0 -erd+3q"

The acceleration of the T+coordinate frame is given as the coordinate transformed sum of the acceleration"otdbedinate
frame plus the acceleration induced by the rotation of i plus the centrifugal acceleration caused by i's rotation:

&= LIS, +@lx 4, +al x(al x5, ) g.= o

Note the signification of this vector's components: the first one is causeeniyfugal acceleration 0 (-3mt2 + m)zﬂ
and the second one by the bodyiertia! From figure 5-m, it can be seen that the components exagjly U

formulate the physical reality: the centrifugal acceleration is 0 for t=0, has a maximum for t=0. @nd ~ 6t + 3n B
returns to be zero for t=1. The acceleration on the other hand is a linear function with negativer 0 0
derivative and also shows symmetry with respect to t=0.5. As the next step, the acceleratiori"of the i+

link's center of mass needs to be calculated. It is given by the acceleration of the coordinate system’s

origin plus the acceleration caused by the rotation of thejdint plus the centrifugal acceleration

caused by the same rotation:

=0ji+ =0j+ —i+ji+ —i+j+

wi+t _—dt INES i+ i+ i+ i+ 2

The next formula calculates the force vector acting on the center of mass df liné Biccording to Newton’s second law:

1+-0,i+

F* =m, 1+
—Ciy

The final forward dynamics equation is Euler’s equation to get the moment abouf tienter of mass:

2 .
the expressions become rather complex



i+ _ i+ it i+ i+ it
M9i+ _Igi+Qi++Qi+xlgi+Qi+

5.4.6 Backward dynamics equations
The force vector exerted on link i by link i-1 is given as a superposition of the transformed force vector exerted owy link i+ b
and the force vector acting on the center of mass of'theki

fi =ALLL+F,

The moment vector exerted on link i by link i-1 is given as the moment acting on i's center of mass, plus the radial caphponents
fi+ plus the transformed moment vector on i+:

n? :Migi +§:,i+ XAi+L:: +£:,i XEi_ci +Ai+ﬂ:

Assuming the joint axis vector’s length to be one, the torque can be computed as orthogonal projection of the momerit:vector on

T :Q: Z

From that, the total energy of the introduced example motion is computed as to be 5.89. Remark: | have here explained the
vectorial version [LWP80]. Theensorialversion [Ba91] allows the equations to be written more elegantly, resulting in a reduced
amount of computation power.

er: :J':i%irddt:ssg

5.4.7 Double polynominal angle function basis

i] 02 0.4 0E 0.8 1

I 2]
0.4

B4

na

figure 5-0

figure 5-n

But the motion still does not look ,natural“. What we intuitively want see is something as shown by figure 5-n. | therefore set

the joint angle functioncps follows:
Ou(t) = -4t + 8t - 4mt?

The border conditions remain. Doing the complete calculus (dynamics equations) yields
1
er:= > [ti|dt=550.
iH13
The amount of required energy has been reduced! We have seen that the minimization of energy induces ,natural“ motions. The
torque functions for the scenarios of figure Snd figure5-n for both joints are shown by figure Snd figure5-p respectively.

02 0a "op 08 1

12
14

figure 5-q figure 5-p
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5.4.8 Maple source text
# Inverse dynamics problem for a example body model due to Luh, Walker and Paul (chk 11.06.97)

X := proc(a,b) # Overload the ‘crossprod' operator
if a=0 or b=0 then vector([0,0,0]) else crossprod(a,b) fi
end;

with(linalg):

omega[0,0] := vector([0,0,0]); omega_dot[0,0] := vector([0,0,0]);

s_dot_dot[0,0,0] := vector([0,0,0]);

z[0,0] := vector([0,0,1]); z[1,1] := vector([0,0,1]); z[2,2] := vector([0,0,1]);

s[0,1,0] := vector([0,0,0]); s[1,2,1] := vector([1,0,0]); s[2,3,2] := vector([0.5,0,0]);

r[1,1,1] := vector([0.5,0,0]); r[2,2,2] := vector([0.25,0,0]);

q[1] := -Pi*t"3+3/2*Pi*t"2; # q[1] := 3*Pi*t"5-15/2*Pi*t"4+5*Pi*t"3; # with q[1]"(0)=q[1]"(1)=0
m[1] := 1.0; m[2] := 0.5;

I_[c1,1] := matrix([[0,0,0],[0,evalf(1/12*m[1]*r[1,1,1][1]),0],[0,0,evalf(1/12*m[1]*r[1,1,1][1])]]);
I_[c2,2] := matrix([[0,0,0],[0,evalf(1/12*m[2]*r[2,2,2][1]),0],[0,0,evalf(1/12*m[2]*r[2,2,2][1])]));

g 1= X-> c[0]*x"+ (-2*c[0])*x"3+c[0]*x"2; #basis for q[2]
coefficients := { c[0]=0 }; n := 1; #number of coefficients

temp := diff(g(t),t);

g_dot := x-> eval(subs(t=x,temp));

A[1] := matrix([[cos(q[1]).-sin(q[1]),0].[sin(q[1]).cos(q[1]),0],[0,0,1])):

a[2] := g(t): Al2] := matrix([[cos(q[2]),-sin(q[2]).0],[sin(a[2]).cos(q[2]),0],[0,0,1]]):

# FORWARD RECURSION

omega[l,1] := evalm(transpose(A[1])&*omega[0,0]+z[1,1]*diff(q[1],t));
omega[2,2] := evalm(transpose(A[2])&*omega[l,1]+z[2,2]*diff(q[2] t));
omega_dot[1,1] := evalm(transpose(A[1])&*(omega_dot[0,0]+x(omega[0,0],(z[1,1]*diff(q[1],t))))+z[1,1]*diff(q[1],t$2));
omega_dot[2,2]:= evalm(transpose(A[2])&*(omega_dot[1,1]+x(omega[1,1],(z[2,2]*diff(q[2].t))))+z[2,2]*diff(q[2],t$2));

s_dot_dot[0,1,1]:= evalm(transpose(A[1])&*(s_dot_dot[0,0,0]+x(omega_dot[0,0],s[0,1,0])+x(omega[0,0],x(omega[0,0],s[0,1,0]))));
s_dot_dot[0,2,2]:= evalm(transpose(A[2])&*(s_dot_dot[0,1,1]+x(omega_dot[1,1],s[1,2,1])+x(omega[l,1],x(omega[1,1],5[1,2,1]))));

r_dot_dot[0,1,1] := evalm(s_dot_dot[0,1,1]+x(omega_dot[1,1],r[1,1,1])+x(omega[l,1],x(omega[1,1],r[1,1,1])));
r_dot_dot[0,2,2] := evalm(s_dot_dot[0,2,2]+x(omega_dot[2,2],r[2,2,2])+x(omega[2,2],x(omega|[2,2],[2,2,2])));
Flc1,1] := evalm(m[1]*r_dot_dot[0,1,1]); F[c2,2] := evalm(m[2]*r_dot_dot[0,2,2]);

Ml[c1,1] := evalm(l_[c1,1]&*omega_dot[1,1]+x(omega[l,1],]_[c1,1]&*omega[1,1]));

M[c2,2] := evalm(I_[c2,2]&*omega_dot[2,2]+x(omega[2,2],]_[c2,2]&*omega][2,2]));

# BACKWARD RECURSION

f[2,2] := evalm(F[c2,2]); # A[3],f[3,3] is not considered since it is 0 in this case

f[1,1] := evalm(A[2]&*f[2,2] + F[c1,1]);

eta[2,2] := evalm(M[c2,2]+x(r[2,2,2],F[c2,2])); #A[3].f[3,3].eta[3,3] is not considered
eta[1,1] := evalm(M[c1,1]+x(s[1,2,1],A[2]&*f[2,2])+x(r[1,1,1],F[c1,1])+A[2]&*eta[2,2]);
tau[2] := simplify(dotprod(eta[2,2],z[2,2]));

tau[1] := simplify(dotprod(eta[1,1],z[1,1]));

# ENERGY CONSIDERATION

unassign(‘d_tau'):

d_tau[2] := grad(tau[2],[seq(c[n-i],i=1..n)]): # tau[2]'s gradient

d_tau[1] := grad(tau[1],[seq(c[n-i],i=1..n)]): # tau[1]'s gradient

unassign(‘tau_d_tau'):

tau_d_tau[2] := [seq(subs(coefficients,tau[2])*subs(coefficients, d_tau[2][i]),i=1..n)]:
tau_d_tau[1] := [seq(subs(coefficients,tau[1])*subs(coefficients, d_tau[1][i]),i=1..n)]:

q[2] := subs(coefficients,g(t)); # g[2] from coefficients
plot(q[2], t=0..1);

tau_concrete[2] := simplify(subs(coefficients, tau[2])):
tau_concrete[1] := simplify(subs(coefficients, tau[1])):
plot({tau_concrete[1],tau_concrete[2]},t=0..1,y=-14..6.5);

Digits := 3; e := evalf(intfnumeric](simplify(abs(tau_concrete[2])+abs(tau_concrete[1])),t=0..1)); # seems to be corrlds £+Qi

d_tau_sum := [seq(simplify(2*tau_d_tau[2][i]+2*tau_d_tau[1][i]),i=1..n)]:
grad_e := [seq(evalf(intfnumeric](d_tau_sum(i],t=0..1)),i=1..n)];

with(plots):
A[2] := matrix([[cos(q[2]).,-sin(q[2]),0], [sin(q[2]),cos(q[2]).0],[0,0,1]]):
steps := 25;
flic :=[):
for i from O to steps do
t := isteps;
templ := evalm(A[1]&*s[1,2,1]);
temp3 := evalm(A[1]&*(evalm(A[2]&*s[2,3,2])));
temp2 := PLOT(CURVES([
[0,0],[evalf(templ[1]),evalf(templ[2])],
[evalf(temp1[1]),evalf(templ1[2])],[evalf(templ[1]+temp3[1]),evalf(templ[2]+temp3[2])]
],THICKNESS(4))):
flic := [seq(flic[j],j=1..nops(flic)), temp2]:
od:
t ="t display(flic, insequence = true);
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6 SELECTED HINTS

6.1 Optimization in question

The following question might eventually aris®ut why is the generation of a motion transition a minimization problem &t all?

From the physical point of view, the energy required to get from the end position of the first to the starting positisecainithe

motion is given by the difference in potential and kinetic energy. This view assumes that kinetic energy can be regained from
slowing down a motion.

The solution presented in [RGBC96] defines other conditions from the definition of the energy function. By squaring esch joint
torque, the squareabsolute torques considered as total effort. The question is, whether this definition really makes sense. For
human muscles, it is a correct consideration since they exert power ioranlgirection being unable to regain energy from
slowing down the induced motion, which needs to be carried out by another muscle.

’

6.2 Gradient computation

From the application of a gradient-based minimization algorithm, the need for computing the gradient of the energy function
ty
e::J'ZtiZdt (1)
ty |

comes up. Since the optimization parameters is the set of coefficients of the angular motion basis chosen, the gradient
Oe = [peldqy,..., deldqn] " 2

is symbolically stated as vector of partial derivatives with respect to the angle functiGmalgating the partial derivatives yields
(from the application of the chain rule):
t
o[y tidt

ae t0 Z : tl aTI

_:—ZZIZTi_dt 3)

aq; 0q; i, 1 oq;
What luck that the derivative can be takato the integral! Without this property, we wouldn’t even ddgde to compute the
gradient: this comes from the computation of the torque. Its analytical form includes functions of the type

fcos(q(t))dt (4)

from the coordinate transformation matrix But we know that there is no closed form for such types of integrals, since the base
functions ¢(t) are parametrized with base coefficients. Thus, the gradiemotdse computed analytically. It can only be evaluated
atdiscrete positionsccording to the following cook’s recipe:

1. Computa;’s partial derivative

2. Insert the actual set of base coefficients
3. Sum up and integrate

6.3 Additive property of angular position and acceleration

It might be unclear, why a coordinate frame’s angular velocity is given as the superposition of an angular velocity axibithe rot
of the coordinate frame itself (first dynamics equation):

Wl =AW +ZG )

figure 6-a figure 6-b

Take a look at the scenario of figure 6-b. It depicts a simple robot with two revolute joints and a red sphere as manipulator.
Imagine having constant rotational velocities as inscribed. Then the situation after some delay might look as shown day figure 6
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Whattotal angular velocity. is necessary to turn the"Hink into the depicted position? The total angular velagityof the i+"
coordinate frame is given as superposition of i's angular velocity and the rotation speed &f ¢beritinate frame: its vertical
components results from the rotation of tedordinate frame whereas the horizontal component results from the rotation of the
i+" joint. From that | state the following observation: the angular velocity miotzseed to be parallel to the joint axis.

6.4 ,Why just A?*

The fact that not A's inverse but only a transposed matFixas been used in the dynamics equations. As mentiohedards for
the transpose of the rotation part of the homogeneous coordinate transformation

_[basé) O
A(t)_E 0 1%- (1)

In the reverse dynamics equations, expressions invoking A(t) always have the form

y(t) = A (D) &)

and_y(t) is always thderivative with respect to timed some vector A(§(t). This comes from the fact that the dynamics equations
do not calculate positions but velocities and accelerations. Thus, (2) can be written as

0 _ 0 [bas¢) IOX}O o Chas¢ JOX)U o Chas¢} OLIX}O -
YW=%H o dH1FaH o HaHo dHiE

That is: the last vector component is redundant since t is a constant (no prismatic joints). Thus, from removing the dieterogene
vector component, [base(t)] can be used as homogeneous coordinate transformation. From the orthogonal property of the base, the
inverse is obtained as the transpose. Note that these simplifications are only valid under thé&ipnsctmt a) no prismatic

joints are used and b) no position vectors are computed.

7 GLOSSARY

Lrevolute joint joint with no translation facility

Lprismatic joint joint with translation facility

,coordinate framé object coordinate system

~support poirit constraineccoordinate framef the body model

~support limb kinematic chain from theupport pointback up the kinematic tree to the root

~reverse dynamics equatidnbackward cynamics equations
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