
GroomGen: A High-Quality Generative Hair Model Using Hierarchical
Latent Representations
YUXIAO ZHOU, ETH Zurich, Switzerland
MENGLEI CHAI, Google Inc., United States of America
ALESSANDRO PEPE, Google Inc., United States of America
MARKUS GROSS, ETH Zurich, Switzerland
THABO BEELER, Google Inc., Switzerland

Fig. 1. Our method is able to automatically generate diverse high-quality hairstyles from random latent vectors.

Despite recent successes in hair acquisition that fits a high-dimensional
hair model to a specific input subject, generative hair models, which estab-
lish general embedding spaces for encoding, editing, and sampling diverse
hairstyles, are way less explored. In this paper, we presentGroomGen, the first
generative model designed for hair geometry composed of highly-detailed
dense strands. Our approach is motivated by two key ideas. First, we con-
struct hair latent spaces covering both individual strands and hairstyles. The
latent spaces are compact, expressive, and well-constrained for high-quality
and diverse sampling. Second, we adopt a hierarchical hair representation
that parameterizes a complete hair model to three levels: single strands,
sparse guide hairs, and complete dense hairs. This representation is critical
to the compactness of latent spaces, the robustness of training, and the
efficiency of inference. Based on this hierarchical latent representation,
our proposed pipeline consists of a strand-VAE and a hairstyle-VAE that
encode an individual strand and a set of guide hairs to their respective latent
spaces, and a hybrid densification step that populates sparse guide hairs to
a dense hair model. GroomGen not only enables novel hairstyle sampling
and plausible hairstyle interpolation, but also supports interactive editing
of complex hairstyles, or can serve as strong data-driven prior for hairstyle
reconstruction from images. We demonstrate the superiority of our approach
with qualitative examples of diverse sampled hairstyles and quantitative
evaluation of generation quality regarding every single component and the
entire pipeline.

Authors’ addresses: Yuxiao Zhou, ETH Zurich, Switzerland, yuxiao.zhou@inf.ethz.ch;
Menglei Chai, Google Inc., United States of America, mengleichai@google.com;
Alessandro Pepe, Google Inc., United States of America, apepe@google.com; Markus
Gross, ETH Zurich, Switzerland, grossm@inf.ethz.ch; Thabo Beeler, Google Inc.,
Switzerland, tbeeler@google.com.

Additional Key Words and Phrases: Strand-level hair modeling, hairstyle
generation

1 INTRODUCTION
Hair substantially contributes to a person’s appearance, and we
frequently change it to express ourselves. As such it plays a critical
role in depicting not just our physical appearance but also reflecting
our individuality, mood, and cultural belonging. Hair digitization
and modeling have recently garnered much attention, highlight-
ing the exciting potential of creating high-quality hairstyles that
contribute significantly to the perceived realism of virtual human
avatars. However, unlike any other parts of ourselves, such as faces,
bodies, or hands, hair geometry is highly intricate and unstructured,
making it exceptionally challenging to represent or model.
Empirically, the complexity of hair arises from two main levels.

Locally, each individual strand corresponds to a 1D curve embedded
in 3D space, originating from the scalp, defined by intrinsic proper-
ties that give rise to diverse curliness or waviness, and modulated
by external conditions such as gravity. Globally, comprising hun-
dreds of thousands of hair strands, the overall hairstyle exhibits a
high-level structure that combines coherency among neighboring
strands with independent variations on a per-strand basis. Given the
intricate nature of hair, much of the existing research focuses on hair
acquisition, which often involves overfitting high-dimensional hair
representations, typically Euclidean positions of densely sampled
vertices, to various types of inputs (multi-view images [Beeler et al.

ar
X

iv
:2

31
1.

02
06

2v
1

 [
cs

.G
R

]
 3

 N
ov

 2
02

3

2 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

2012; Luo et al. 2012; Nam et al. 2019;Winberg et al. 2022; Zhang et al.
2017], single photos [Chai et al. 2016; Hu et al. 2015], or specialized
sensors [Herrera et al. 2012]). While high-fidelity reconstruction
for specific subjects is achieved, without proper parameterization
that embeds the different hair within a shared compact space, their
outputs lack the generalization capability necessary to support
interpolation, manipulation, or novel hairstyle synthesis.
On the other hand, generative hair models, the main focus of

this work, remain relatively unexplored. The pioneering work on
hair geometry synthesis [Wang et al. 2009] proposes a 2D hair
embedding that can generate new hairstyles from given exemplars
through texture synthesis. However, due to the inherent limitations
of explicit strand geometry encoding and homogeneous texture
synthesis, this approach can only handle short to medium-length
hair with uniform styles. More recently, Volumetric Hair VAE [Saito
et al. 2018] demonstrates the potential of generating novel hairstyles
by interpolating existing ones in a latent volume space. However,
the combination of volumetric flow field and post-processing strand
tracing often results in over-smoothed geometry with limited strand-
level detail and inter-strand variation. The objective of our work is to
develop a novel architecture for strand-level hair generation, capable
of synthesizing diverse hairstyles with high-quality dense geometry
in a computation- and memory-efficient manner. To this end, we
aim to establish a new hair representation that is highly compact
and efficient, capable of capturing common hairstyles through a
shared parameterization, and expressive enough to encompass both
global structural characteristics and local fine details.

We introduce GroomGen, a generative model for diverse and high-
quality hairstyle synthesis. Our method is rooted in a hierarchical
hair representation, inspired by the conventional practice of guide-
hair-based authoring in visual effects. We represent a hairstyle
using three levels of abstraction: strand latent codes for individual
strands, low-resolution latent-maps for sparse guide hairs, and high-
resolution strand-maps for dense hairstyles. This hierarchy not
only achieves significant compression, robust training, and efficient
inference without compromising expressiveness, but also establishes
a versatile multi-level embedding space for sampling diverse and
valid hairstyles. Based on this hierarchical representation, we design
the entire hair generation pipeline as three major components:

(1) At the single strand level, we employ a strand variational
autoencoder (strand-VAE) to establish a low-dimensional
latent space for encoding diverse strand geometry.

(2) Building upon the strand latent space, our hairstyle vari-
ational autoencoder (hairstyle-VAE) encodes the sparsely-
sampled guide hairs into a hairstyle feature vector.

(3) To generate dense hair from sparse guide strands, we pro-
pose a GAN-based neural upsampler that synthesizes high-
resolution hair geometry, followed by a heuristic refinement
step that allows user control for customizing details.

Our compact model possesses the capability to represent and
generate diverse hairstyles with high visual fidelity. This versatility
makes it useful for a wide range of applications, such as simu-
lation, generating training data for downstream models through

(un)conditional sampling, serving as a powerful prior for robust
image-based hair reconstruction, and facilitating rapid hairstyle
creation and exploration for artists.

2 RELATED WORK
Strand Representation of Hairs. A common approach to represent

a hair model is by using a collection of hair strands, where each
strand is defined as a polyline consisting of tens or hundreds of
vertices. While this representation is intuitive and expressive, it
often becomes heavy and redundant. To address this issue, pre-
vious works such as [Bertails et al. 2006, 2005] propose to use
the super-helix as a compact approximation of hair strands. This
representation requires only a few parameters per strand, but the
resulting reconstruction is typically over-smoothed. In the recent
work by [Rosu et al. 2022], neural representations of hair strands
are explored. The authors adopt the modulated sine network struc-
ture [Mehta et al. 2021] tomap a strand into a low-dimensional latent
space, achieving superior reconstruction results. In organizing the
strands of a hair model, many previous works [Lyu et al. 2022; Rosu
et al. 2022; Zhou et al. 2018] opt to parameterize the scalp area
using UV unwrapping and assign strands to corresponding pixels.
While such a UV-mapping representation facilitates the exploitation
of spatial adjacency among strands, due to the huge number of
hair strands, a high-resolution UV map is often required, resulting
in significant computational costs. Taking advantage of the local
similarity of human hairs, other works [Chai et al. 2014, 2017; Guan
et al. 2012] propose to use a set of sparse guide strands as proxies for
all hairs, leading to more efficient simulation, which is a common
practice in the industry. In this paper, we choose to utilize the
strand-based representation for its fidelity and flexibility. We follow
the convention of using guide hairs to represent hairstyles, which
helps reduce the computational and memory overhead compared to
representing individual strands directly.

Volumetric Representation of Hairs. An alternative approach to
representing a hair model is through volumetric representation,
where the entire hair volume is voxelized, and each voxel contains
information about the growth direction and other properties of the
hairs within it. This voxelized representation often organizes the
free-growing hairs into regular groups, making the hair structure
easier to capture. Although impressive results [Kuang et al. 2022;
Saito et al. 2018; Wang et al. 2022; Wu et al. 2022; Yang et al. 2019]
have been achieved, the expressiveness of volumetric representa-
tions is inherently limited by the granularity of the discretization.
The in-voxel fusion process inevitably leads to over-smoothed re-
sults, especially when dealingwith curly hair or instanceswhere hair
strands cross each other within the same voxel. Furthermore, the
use of volumetric representation can be computationally expensive,
particularly when dealing with large volumes of long hairstyles.

Hair Acquisition. Hair capturing is an active and evolving re-
search area. While a few previous works [Herrera et al. 2012; Jakob
et al. 2009] seek to capture hair geometry with specialized devices,
most existing methods for hair capturing rely on consumer-grade
single- or multi-view cameras [Paris et al. 2004, 2008; Wei et al.
2005]. Static hair reconstruction techniques [Beeler et al. 2012; Chai

GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations • 3

et al. 2013, 2012; Luo et al. 2013; Nam et al. 2019; Olszewski et al.
2020; Sun et al. 2021; Winberg et al. 2022; Zheng et al. 2023] aim to
reconstruct 2D and 3D hair curves based on single-view visual cues
and multi-view correspondences. The work of [Shen et al. 2021]
seeks to infer hair geometry from user sketches. In addition, dynamic
capturing methods [Hu et al. 2017; Xu et al. 2014; Zhang et al.
2012] take temporal consistency into consideration. Although these
model-free methods demonstrate impressive results, they tend to be
fragile in challenging cases and unconstrained environments due to
the thin strand geometry, occlusion between strands, and complex
hairstyle configurations. To enhance robustness, recent works have
introduced prior models as constraints. Some approaches [Chai
et al. 2015; Hu et al. 2014] employ geometric primitives as con-
straints for individual hairs during capturing, while others utilize
hairstyle databases [Chai et al. 2016; Hu et al. 2015; Liang et al. 2018]
for initialization and guidance, largely improving reconstruction
quality and stability. Furthermore, with the advancements in deep
learning, neural approaches have emerged as the new state-of-the-
art. For instance, the work of [Zhou et al. 2018] captures hair from
monocular images by extracting hairstyle features using convolution
neural networks. The work of [Rosu et al. 2022] combines multi-
view reconstructionwith neural descriptors to achieve photorealistic
telepresence. In addition to strand-based representations, volumetric
methods [Kuang et al. 2022; Luo et al. 2012; Saito et al. 2018; Wu
et al. 2022; Yang et al. 2019] also have made significant progress
in capturing both static and dynamic hair. These works aim to
provide reliable priors for robust and high-quality hair acquisition,
presenting a potential application of our research.

Hair Generation. Compared to hair acquisition, generative hair
models are relatively unexplored. A heuristic example-basedmethod
for hair generation is proposed by [Ren et al. 2021], which is largely
limited by the reference hair models. Variational autoencoder (VAE)
[Kingma and Welling 2014] is widely recognized as one prevalent
generative architecture. In the context of hair modeling with vol-
umetric representation, the work of [Saito et al. 2018] proposes
the utilization of VAEs. However, VAEs often suffer from over-
smoothness issues despite their extensive examination for data
embedding. Generative adversarial networks (GAN) [Goodfellow
et al. 2014] have also demonstrated remarkable results in image
generation [Karras et al. 2019; Radford et al. 2016]. By incorporating
the perceptual discriminator loss, GANs are particularly effective in
recovering fine detail with weak supervision. For our specific task,
we employ both VAEs and GANs, where two VAE models encode
individual strands and overall hairstyles, while another GAN model
is adopted for detail restoration.

3 METHOD
In this section, we present our comprehensive pipeline for hairstyle
generation, tailored specifically for strand-based hair models. Our
algorithm operates on three hierarchical levels of human hair: indi-
vidual strands, sparse guide strands, and the complete hair model
with dense hair strands. Accordingly, we design three components
for each hierarchical level in hairstyle generation: 1) At the single
strand level, our strand variational autoencoder (strand-VAE) estab-
lishes a low-dimensional latent space for encoding strands (Sec. 3.1).

Fig. 2. We build a hierarchical representation of human hairstyles. To
generate a hair model, we first draw a random vector from the Normal
distribution in the hairstyle latent space. The vector is decoded by the
hairstyle-VAE to get a low-resolution latent-map, which corresponds to
sparse guide strands. Finally, the neural upsampler synthesizes dense hair
strands from the sparse guide strands, which are further refined heuristically
based on user specification.

2) Building upon the strand latent space, a hairstyle variational au-
toencoder (hairstyle-VAE) further encodes a hair model, represented
by a collection of sparsely-sampled guide strands, into a feature
vector (Sec. 3.3). 3) A hybrid densification step consisting of a neural
upsampler (Sec. 3.4) and a heuristic refiner (Sec. 3.5) synthesizes
the full hair style from the sparse guides. By connecting all these
components together, our pipeline provides a complete framework
for hair model generation. The overall structure of the pipeline is
illustrated in Fig. 2.

3.1 Strand Latent Space
Our strand-VAEmodule performs the encoding of individual strands,
transforming their Euclidean coordinates into a low-dimensional
strand-wise latent space. This latent space serves as the foundation
for guide strand generation and quasi-static simulation. Compared
to raw Euclidean coordinates, our latent encoding is better regu-
larized to a more constrained distribution of valid strands, without
sacrificing strand-level geometric details, coherency among strands,
or the overall diversity of the generated hairstyle.
Typically, a strand is represented as a polyline consisting of

𝑁𝑠 uniformly sampled points. Previous work [Rosu et al. 2022]
constructs a latent space based on this polyline representation.
However, we observe that representing strands in the original Eu-
clidean space often has a significant negative impact on the structure
preservation of the resulting latent space, leading to over-smoothed
hair generation. To better retain strand-level details like curliness,
we parameterize the strands in the frequency domain using the dis-
crete Fourier transform (DFT), and establish the strand latent space
based on this frequency representation. As elaborated in Sec. 4.3,
this frequency latent space aligns better with human perception
compared to the spatial latent space.

4 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

Formally, in the Euclidean spatial domain, a strand is originally
represented as a polyline with 𝑁𝑠 points: S = {𝒑1,𝒑2, . . . ,𝒑𝑁𝑠

} ∈
R𝑁𝑠×3 (𝑁𝑠 = 100 in our case). We first compute the gradients as S̄ =

{𝒅1, 𝒅2, . . . , 𝒅𝑁𝑠−1} ∈ R(𝑁𝑠−1)×3 with the gradient displacement
𝒅𝑖 = 𝒑𝑖+1 − 𝒑𝑖 , and then equally divide the entire strand into
𝑁𝑔 non-overlapping segments: S̄𝑖 = {𝒅𝑖𝑘 , 𝒅𝑖𝑘+1, . . . , 𝒅𝑖𝑘+𝑘−1}, 𝑖 ∈
{1, 2, ..., 𝑁𝑔} with 𝑘 = ⌈(𝑁𝑠 −1)/𝑁𝑔⌉ denoting the segment size. The
strands are segmented to allow for varying shape statistics along
the strand. In all our experiments, we set 𝑁𝑔 = 3. For each segment,
we apply the DFT along 𝑥,𝑦, 𝑧 axes separately with respect to vertex
indices, obtaining coefficients of Fourier bases F 𝑎

𝑖
∈ C𝑓 , with

𝑎 ∈ {x, y, z} referring to the axes and 𝑓 = ⌊𝑘/2⌋ + 1 representing the
number of frequency bands. Instead of using F directly, we further
decompose it into three parts by taking their physical meanings
into consideration: F𝐴 = abs(F) ∈ R𝑓 , Fcos = real(F

F𝐴) ∈ R
𝑓 , and

Fsin = img(F
F𝐴) ∈ R

𝑓 , where abs(·), real(·), and img(·) refer to the
absolute value, real part, and imaginary part of a complex number.
Here, F𝐴 describes the amplitude of each frequency, intuitively
the significance of the strand’s curliness and length; Fcos and Fsin
together describe the phase of the curves. We encode the phase as
vector (Fcos, Fsin) instead of a scalar phase angle to avoid issues
with periodicity. Concatenating F𝐴 , Fcos, and Fsin for all segments
and axes, we obtain a vector V , namely the frequency code, of
𝑁𝑔 × 𝑓 × 3 × 3 = 459 dimensions, to represent a strand in the
frequency domain.
Our strand-VAE takes V as both the input and reconstruction

target. The employed training loss terms include: L1 loss LA for the
amplitude coefficients FA; L1 loss LP for the phase coefficients Fcos
and Fsin; and KL divergence loss L𝑠

𝐾𝐿
with weight 𝜆𝑠

𝐾𝐿
= 10−4:

L𝑠 = LA + LP + 𝜆𝑠𝐾𝐿L
𝑠
𝐾𝐿 . (1)

Since the phases of the high-amplitude components play a more
crucial role, the phase loss LP on each frequency is weighted by the
corresponding ground truth amplitude F̂A:

LP =

𝑓∑︁
𝑖=1

F̄ 𝑖A ∗ (|F 𝑖sin − F̂ 𝑖sin | + |F 𝑖cos − F̂ 𝑖cos |), (2)

F̄ 𝑖A =
F̂ 𝑖A∑𝑓

𝑗=1 F̂
𝑗

A

. (3)

Here, ·̂ denotes the ground truth values and F̄ 𝑖A represents the
normalized weight for each frequency band 𝑖 . The summation over
the axes and segments is omitted here for conciseness.
The encoder of the strand-VAE consists of a fully-connected

network with 7 layers. Except the input and output layers, each
layer has 1024 hidden units with batch normalization [Ioffe and
Szegedy 2015] and residual connection [He et al. 2016]. It takes
the individual strand representation V as input and compresses
it into a latent code 𝒍 ∈ R𝐷𝑠 . We use 𝐷𝑠 = 64 in our experiments,
resulting in a compression rate of 21.5%. On the other hand, the
decoder follows the modulated sine network structure [Mehta et al.
2021] with 6 layers and 1024 hidden units. Given a latent code 𝒍 , the
decoder generates the vector V , which can then be converted back
to Euclidean coordinates S, with the additional input of the root
position 𝒑1 pre-defined on the scalp.

Fig. 3. Illustration of our scalp parameterization (left) and latent-maps with
baldness (right). Visualized using selected 3 axes of the strand latent codes.

3.2 Scalp Space Hairstyle Parameterization
We now introduce our representation of hairstyles. Similar to prior
works [Lyu et al. 2022; Rosu et al. 2022; Wang et al. 2009; Zhou
et al. 2018], we define the 2D parameterization of hairs on the scalp
surface as a regular UV map, as illustrated in Fig. 3. The strand
representations are embedded into the UV map at the positions
corresponding to their roots on the scalp. When the strands are
represented by frequency codesV , the corresponding UV map is
referred to as a strand-map; when the strands are represented by
their latent codes, the UV map is called a latent-map. These two
maps can be mutually converted using the strand-VAE.

In our pipeline, we employ two different resolutions for the latent-
maps: 24× 32 (referred to as a low-resolution map where 1 pixel has
side length 1.0−2.9cm) and 216×288 (referred to as a high-resolution
map where 1 pixel has side length 0.1 − 0.3cm). As not all texels
are used, the low-resolution maps usually accommodate around
300 hairs, while the high-resolution ones contain around 25K hairs.
Initially, we generate a low-resolution latent-map that corresponds
to sparse guide strands, and then adopt a hybrid densification step
to generate dense hair strands from the guide strands. This design
choice is motivated by the observation of high redundancy in dense
hairs due to the local coherency of nearby strands. Compared to
directly using high-resolution latent-maps (256 × 256 in [Rosu et al.
2022] and 128 × 128 in [Lyu et al. 2022]), our intermediate repre-
sentation enables better convergence during training and higher
computational efficiency during inference. This design also aligns
with the common CG practice of using sparse guide strands to model
and control the global hairstyle structure before densification.
Additionally, to ensure generalizability to a broader range of

hairstyles, we incorporate baldness as part of the hairstyle. Baldness
is defined by an additional binary mask, referred to as a baldness-
map within the scalp space, as depicted in Fig. 3.

3.3 Hairstyle Latent Space
Based on the scalp space parameterization, our hairstyle-VAE learns
to generate whole hairstyles utilizing the VAE framework. The input
and reconstruction target for the hairstyle-VAE consist of both the
low-resolution latent-map M𝑙 ∈ R𝑤𝑀×ℎ𝑀×𝐷𝑠 and the baldness-
map M𝑏 ∈ R𝑤𝑀×ℎ𝑀 , where 𝑤𝑀 and ℎ𝑀 represent the width and
height of both maps. Within the hairstyle-VAE, the encoder projects
the latent-map M = {M𝑙 ,M𝑏 } into a single latent vector 𝒉 ∈ R𝐷ℎ

GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations • 5

(we set 𝐷ℎ = 512, resulting in a compression rate of 99%), and
the decoder takes the latent vector 𝒉 as input to reconstruct the
corresponding latent-map. The training objective is defined as:

Lℎ = LM𝑙
rec + LM𝑏

rec + 𝜆ℎ𝐾𝐿L
ℎ
𝐾𝐿, (4)

where LM𝑙
rec and LM𝑏

rec are the L1 reconstruction losses for latent-
map M𝑙 and baldness-map M𝑏 , and Lℎ

𝐾𝐿
is the KL divergence loss

with weight 𝜆ℎ
𝐾𝐿

= 0.01.
Our hairstyle-VAE utilizes a concise network architecture. The

encoder part consists of a total of 12 convolutional layers, incorpo-
rating residual connections. Similarly, the decoder is symmetric to
the encoder and employs transposed convolutions for upsampling.
Please see Appendix D for detailed network structures.

3.4 Neural Upsampling
The hairstyle-VAE produces a low-resolution latent-map that rep-
resents sparse guide strands. To further generate a complete hair
model with around 150K strands, we then employ a hybrid densifi-
cation process involving two steps: upsampling and refinement. The
upsampling step outputs a high-resolution strand-map with 25K
hairs, and the refinement step additionally populates the strands by
6 times.
We emphasize that an end-to-end model is less suitable here

because the mapping from sparse guide strands to dense hair strands
is one-to-many, and the user’s involvement is often necessary to
resolve the ambiguity. Our two-step hybrid approach strikes a
balance between simplicity and controllability. In the first step, our
novel neural upsampler automatically populates the strands based
on the guide strands. In the second step, users are allowed to refine
the high-frequency details, providing control over the final results.
In this section, we will introduce the first step of neural upsampling,
while the second step will be elaborated in Sec. 3.5.

In the upsampling step, we aim to estimate a high-resolution
strand-map from a low-resolution one where pixels contain fre-
quency representations F of guide strands. The low-resolution
strand-map is obtained by decoding the output of the hairstyle-VAE
with the strand-VAE. Analogous to image upsampling, we assume
that each dense strand can be viewed as a linear interpolation of its
four neighboring guide strands. Consequently, the task simplifies
to estimating the interpolation weights of the guide strands at
each position. Trivial interpolation methods are inadequate for
this task due to the significant variation in local smoothness ob-
served in human hairstyles. Bilinear interpolation, for example,
smooths out sharp parting lines and result in hair-head penetration,
while nearest-neighbor interpolation exhibits aliasing artifacts (as
depicted in Fig. 4). Therefore, spatially varying interpolation is often
preferred, but determining an effective interpolation strategy a priori
is challenging. While the industry relies on intensive manual design
for this purpose, we introduce a neural upsampler to automate the
process and ensure realism.
The input of the neural upsampler is a high-resolution multi-

channel feature map that describes the guide strands distribution.
At each pixel, the feature vector is formed by concatenating the low-
frequency components of its four neighboring guide strands, their

Fig. 4. Illustration of interpolating near a parting line. (1) shows the source
low-resolution strand-map where red and green represent strands growing
in opposite directions and the dashed line is the expected parting line. The
ideal interpolation is (2) where the parting line is sharp while other regions
are smooth. The nearest-neighbor interpolation in (3) has aliasing artifacts.
The bilinear interpolation in (4) smooths out the parting line and the strands
may even penetrate the head mesh.

bilinear interpolation, and the distances to the guides. Only the low-
frequency components are considered, with a cut-off frequency
set to 𝑓𝑙 = 8. This choice is made because the high-frequency
details have less significance in the interpolation process and will be
refined later on. The output of the neural upsampler is a 5-channel
weight-map, where the first 4 channels represent the weights for
the four neighboring guide strands, and the last channel represents
the weight for the bilinear interpolation of the guide strands. At
inference, each strand 𝑌 on the interpolated high-resolution map is
computed as 𝑌 = 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎4𝑋4 + 𝑎5B(𝑋1, 𝑋2, 𝑋3, 𝑋4),
where {𝑎𝑖 } represent the predicted weights, {𝑋𝑖 } represent the
neighboring guide hairs from the low-resolution map, and B(·)
denotes the bilinear interpolation of guide hairs at the position of 𝑌 .
The bilinear interpolation is an effective shortcut because oftentimes
it already provides a solution close to the optimal one.
The neural upsampler is trained in an adversarial framework

(GAN) [Goodfellow et al. 2014] for two reasons: First, dense hair
interpolation is not a deterministic task and there is no unique
ground truth; Second, for dense hairstyles, it is more reasonable
to perceptually evaluate the hair model as a whole rather than
enforcing per-strand supervision. We devise the neural upsampler
as a 12-layer convolutional network with residual connections and
instance normalization [Ulyanov et al. 2016], and use a large kernel
size of 13 to perceivemore spatial information in this high-resolution
setting (more details in Appendix D). The discriminator has the same
structure as the generator, except that its input is the interpolated
high-resolution strand-map and its output is a score map. The
loss function follows the Wasserstein loss [Arjovsky et al. 2017].
Denoting the neural upsampler as𝐺 and the discriminator as 𝐷 , the
loss function for the discriminator is:

L𝐷 = 𝐷 (H) − 𝐷 (X) + 𝐷 (H)2 + 𝐷 (X)2, (5)

where X is a real strand-map from the dataset andH is a generated
one.𝐷 (H)2 and𝐷 (X)2 are regularization terms that prevent𝐷 (H)
and 𝐷 (X) from being numerically too large. The loss function for
the generator is:

L𝐺 = −𝐷 (H) + 𝜆𝐺 (Lbl
𝐺
+ Lg

𝐺
+ Lsum

𝐺
). (6)

Denoting the 5-channel interpolation weights estimated by𝐺 asW,
Lbl
𝐺

= |W5 − 1| biases the weight of bilinear interpolation (channel
5) towards 1, Lg

𝐺
=
∑4
𝑖=1 |W𝑖 | regularizes the weights of each guide

6 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

towards 0, and Lsum
𝐺

= |∑5
𝑖=1 W𝑖 −1| softly normalizes the weights.

The regularization weight 𝜆𝐺 is set to 0.1.

3.5 Heuristic Refinement
The high-resolution map generated by the neural upsampler con-
tains 25K strands, which is still fewer than normal human hairs. To
further enhance the quantity and quality of the dense strands, we
introduce a heuristic refinement step that increases the number of
hairs to 150K with fine details. In this step, we provide the user with
creative semantic control over the final appearance. This step can
also be fully automatic with fixed or randomized parameters if a
hands-off approach is preferred, e.g. for large scale data generation.

We start by addressing penetrations (detailed in Appendix C) and
perturbing the frequency representation F with random noise to
increase variation. The scale of the noise can be specified by the
user, allowing for the creation of regular or messy hairstyles. Next,
we perform wisp formation in the Euclidean spatial domain. The
user may specify two parameters: the number of wisps𝑤 and the
stickiness 𝑠 to control the clustering of hairs. We adopt k-means
clustering to identify𝑤 wisp clusters, and then guide each strand
towards the center of its corresponding cluster:

𝛿𝑖 =
𝑠 · min(1, 𝑙𝑖

𝑙
)

max(1, 𝑑2
𝑖
)

+
𝑖−1∑︁
𝑘=1

𝛿𝑘 . (7)

We denote the vertex index as 𝑖 , where 𝑖 = 1 is the fixed strand
root with displacement 𝛿1 = 0, and the deformation 𝛿𝑖 of other
vertices is determined by stickiness 𝑠 , distance to the center strand
𝑑𝑖 , and length to the strand root 𝑙𝑖 . To prevent excessive deformation
near the root, we empirically set 𝑙 to 5cm as a threshold. This
simple deformation strategy can yield practically satisfactory results
since the neural upsampler provides a good initialization. This wisp
formation is skipped when𝑤 = 0 or 𝑠 = 0. Finally, as the raw output
of the neural upsampler only contains 25𝐾 strands, we duplicate
all strands 6 times with small variations in the frequency domain
again. This allows us to increase the total strand number of the final
model to 150𝐾 , further enhancing its density and realism.

4 EXPERIMENTS AND APPLICATIONS
Extensive experiments are conducted to validate the effectiveness
of our hair generation pipeline. In Sec. 4.1, we introduce the dataset,
training procedure, and system runtime. In Sec. 4.2, we evaluate
each main component of our method. We present ablation studies to
justify the major technical choices in Sec. 4.3. Finally, in Sec. 4.4, we
introduce a quasi-static neural hair simulator as one downstream
application of our model.

4.1 Datasets, Training, and Runtime
The model is trained and evaluated on an artist-created hairstyle
dataset, referred to asGroomHair, which comprises diverse hairstyles
with fine-grained variations. To create the dataset, the artists first
identified 35 base hairstyle categories, encompassing a wide range
of styles such as buzz, bobby, pixie, wavy, afro, and more (see
Appendix F for the complete list). For each category, the artists

Table 1. Runtime and number of parameters of the modules. Our system
achieves real-time performance for generation, editing, and simulating up
to 500 strands before densification.

component runtime (ms) # params.# strands 1 300 500 150K
strand-VAE 1.90 14.9 23.5 7670 10.59M

neural simulator 3.26 4.58 4.77 1330 32.74M
hairstyle-VAE 3.42 83.65M

neural upsampler 281 11.22M

utilize Houdini ∗ to create a recipe that defines the desired hairstyles
and generate a series of fine-grained variations (50 − 400 depending
on the hairstyle) of the same category using different parameters.
In some categories, baldness is also modeled, which corresponds
to the baldness-map used by the hairstyle-VAE. The final dataset
contains 7712 data samples, each representing a specific hair model
with approximately 150K strands. We randomly split the entire
dataset into 6940 training samples and 772 test samples. The training
samples are further augmented by horizontal mirroring.

We first train our strand-VAEmodel using theGroomHair dataset.
Subsequently, we fix the strand-VAE model and use it to process the
hair models in GroomHair to obtain the training and testing data
for the hairstyle-VAE.
The strand-VAE and hairstyle-VAE are both trained using the

Adam [Kingma and Ba 2015] optimizer with an initial learning rate
of 10−3, which is reduced by a factor of 0.1 whenever the training
loss ceases to improve. The training process continues until the
learning rate reaches 10−6. The neural upsampler is also trained
using the Adam optimizer but with a fixed learning rate of 10−4 for
a total of 105K iterations (around 27 epochs).
We evaluate the runtime performance of each module on a PC

equipped with an Intel Core i9-11900KF CPU and an NVIDIA A100
40GB GPU. The results are summarized in Tab. 1. It is noteworthy
that the runtime measurements for the strand-VAE and hairstyle-
VAE only include the decoder parts of the networks. Our system
exhibits real-time performance, achieving more than 30 FPS for
the generation and simulation of 300 − 500 guide strands, which
is a common quantity in hairstyle authoring. Users can edit the
hairstyle by either tweaking the hairstyle code in the latent space
or modifying the guide strands in the Euclidean space interactively.
The heuristic refinement step typically takes 10 − 15 seconds, and
the optional penetration correction step takes 30 − 55 seconds.

4.2 Evaluation
In this section, we provide a comprehensive assessment of the
components of our system in a bottom-up order. First, we evaluate
the performance of the strand-VAE in encoding individual strands
into the strand latent space. Next, we assess the hairstyle-VAE in
embedding a given hair model into the hairstyle latent space, as
well as generating hair models from this latent space. Finally, we
demonstrate how the densification step effectively produces realistic
dense hairs from sparse guide strands.

∗https://www.sidefx.com/products/houdini/

GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations • 7

Table 2. Quantitative metrics of the strand-VAE, hairstyle-VAE, and neural
simulator. The errors are acceptably low.

strand-VAE hairstyle-VAE neural simulator
pos. err. 1.90mm 7.26mm 8.89mm
loc. err. 0.15mm 0.40mm 0.44mm

Fig. 5. Reconstruction results of strand-VAE on the test set by encoding
and decoding each strand. The difference is barely observable. The average
positional errors for the demonstrated samples are (left to right, top to
bottom): 1.41mm, 1.13mm, 1.30mm, and 5.08mm.

We use the following per-strand metrics. Recall that originally
each hair strand is represented as a polyline S = {𝒑1,𝒑2, . . . ,𝒑𝑁𝑠

}
and the parent-relative displacement is defined as 𝒅𝑖 = 𝒑𝑖+1 − 𝒑𝑖 .
Positional error (pos. err.) calculates the mean distance between
corresponding points of the predicted strands and the ground truth
(indicated by ·̂): ∑𝑁𝑠

𝑖
∥𝒑𝑖 − 𝒑𝑖 ∥/𝑁𝑠 . Local position error (loc. err.)

measures the L2 distance between the gradients of corresponding
points on the strands, without accumulating errors along the hair:∑𝑁𝑠−1
𝑖

∥𝒅𝑖 − 𝒅𝑖 ∥/(𝑁𝑠 − 1). We report these metrics by averaging
them per hair model and then across the entire test set. This ensures
that each hair model contributes equally to the final numbers.

Strand-VAE. We first evaluate the strand-VAE model on the test
set by measuring the reconstruction error of encoding and decoding
individual strands. The quantitative results are reported in Tab. 2
(1st column). The mean reconstruction error is remarkably low,
measuring only 1.90mm. In Fig. 5 we provide a few examples of
strand reconstruction from the test set. As demonstrated, the re-
construction is of high fidelity and the difference is hard to discern.
These results indicate that the strand-VAE effectively constructs a
latent space that serves as a solid foundation for subsequent steps.

Hairstyle-VAE. Next,We evaluate the performance of the hairstyle-
VAE model by encoding and decoding the entire hair model rep-
resented as a latent-map. The reconstructed latent-map is then
decoded by the strand-VAE to obtain hair strands in the Euclidean
space for visualization and error computation. The resulting recon-
struction errors are reported in Tab. 2 (2nd column). As encoding
the entire hair model is generally more challenging, particularly
in our setting where the hairstyle latent vector utilizes only 0.4%
parameters of the guide hairs, we observe relatively larger errors

Fig. 6. Selected results of our hairstyle-VAE on the test set. Hairstyles are
well-preserved with only 0.4% parameters of the original guide hairs. The
average positional error for the demonstrated samples are (left to right, top
to bottom): 8.35mm, 5.65mm, 24.53mm, 12.76mm, 24.61mm, and 20.68mm.

compared to the strand-VAE. Nevertheless, the average error of 7mm
remains at an acceptably low level, preserving the overall visual
appearance of the hairstyle well as can be seen in Fig. 6, even for
challenging hairstyles (right column) that have not been explored
in previous works. Additionally, our model accurately reconstructs
the baldness-map, a component often overlooked in prior work. The
intersection-over-union (IoU) of the baldness-map on the test set
measures 97.3% when the threshold is set to 0.8.
We now present a series of experiments to showcase the capa-

bility of the hairstyle-VAE in hairstyle generation and authoring.
Firstly, we demonstrate that the latent space of the hairstyle-VAE
is sufficiently well-constrained to allow for meaningful hairstyle
generation by direct random sampling from the Normal distribution,
as shown in Fig. 7. It is worth emphasizing the high local diversity
observed in the generated hair styles, where the strands deviate
from each other frequently, in contrast to previous works where
nearby strands tend to grow in parallel and become over-smoothed.
Additionally, we show that hairstyles can also be generated by

traversing the latent space through interpolation, as shown in Fig. 8.
Despite the distinct characteristics of the starting and ending hair
models, the interpolation path in the hairstyle latent space remains
semantically valid. This demonstrates the flexibility of our model in
generating new hairstyles with controllable attributes.

Furthermore, we explore another interesting application of arith-
metic operations between hairstyles, as shown in Fig. 9. Denoting
the hairstyle latent vector of column 𝑖 as 𝒉𝑖 , we compute 𝒉∗ =

𝒉1 − 𝒉2 + 𝒉3 and decode 𝒉∗ to produce the resulting hair model.
This simple arithmetic aligns well with human intuition and can
generate novel hairstyles that do not exist in our dataset.
The most similar previous work is Volumetric Hair VAE (VHV)

of [Saito et al. 2018] that learns the latent embedding of hair models
from volumetric representation. However, a fair comparison is

8 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

Fig. 7. Diverse hairstyles generated by our hairstyle-VAE from random vectors sampled in the hairstyle latent space. We would like to emphasize 1) the
diversity of hairstyles, which comes from the powerful hairstyle-VAE; 2) high local variety of the hairs, which originates from the well-structured frequency
strand latent space.

Fig. 8. Interpolation of hairstyles from left to right in the hairstyle latent
space. While the start and end hairstyles are distinct, the interpolation
trajectory is reasonable.

Fig. 9. Arithmetic between hairstyles: we subtract the hairstyle latent vector
𝒉 of column 2 from column 1 and add the difference to column 3, finally get
column 4. First row: the differences in curliness and length are successfully
transferred. Second row: the difference between column 1 and 2 is the fringe,
which is added to column 3 and gives us column 4. The hairstyles in the last
column are not in the original dataset.

challenging due to fundamental differences in tasks (capture vs.
generation), hair representations (voxels vs. strands), and datasets.

Table 3. A rough comparison with VHV [Saito et al. 2018]. Our method
has higher IoU, precision, and recall, which suggests better estimation of
strand occupancy in the space. Our method has a slightly higher L2 flow
error because we use a strand-based representation. Notably, ours has a
much more compact latent space that supports direct random sampling.

IoU Precision Recall L2 (flow) latent dim.
VHV 0.8243 0.8888 0.9191 0.2118mm 6144
ours 0.9426 0.9777 0.9626 0.2807mm 512

Table 4. Hair-head penetration rate of different interpolation methods.
Our GAN-based neural upsampler avoids the aliasing artifacts in nearest
neighbor interpolation but also keeps the parting line sharp, as indicated
by a very low penetration rate.

ours NN BL full sup. latent pred.
rate 1.5‰ 0.0‰ 5.0‰ 2.1‰ 195.5‰

For a rough comparison, we convert our predicted strands into
volumetric representations and report the numbers in Tab. 3 (note
that the test sets differ). The metrics of IoU, precision, and recall
evaluate the correctness of strand occupancy in the space. While
our latent space is much more compact than that in VHV, our
method still outperforms VHV on these metrics. It is noteworthy
that our method exhibits higher error on the growing flows due to
the fact that the volumetric representation in VHV fuses growing
directions within the same voxel, which conflicts with our strand
representation without any fusion. Furthermore, our model can
generate hairstyles simply from random sampling, while VHV only
demonstrates interpolation of given similar hairstyles. Please find
qualitative comparisons with VHV in Appendix E.

GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations • 9

Fig. 10. Output from our neural upsampler based on our hairstyle-VAE reconstruction. Our method produces the most natural results, and the weight maps
(please refer to 4.2 for an explanation) reveal the parting lines correctly. Nearest neighbor (NN) interpolation shows unrealistic abrupt changes between
patches. Bilinear (BL) interpolation has severe hair-head penetration issues near the parting line.

Fig. 11. Our results after refinement. Each group is produced from the same output of the neural upsampler. The parameters effectively control the fine details
without losing realism. Note the complex wisps structures, e.g. row 1 column 5, originates from the generated guide strands with high local variety.

Hybrid Densification. In the densification step, we utilize our
neural upsampler to increase the number of strands by upsampling
low-resolution latent-maps to higher resolution. This is followed by
a heuristic refinement process with user-defined parameters. Please
note that all the results presented in this step are based on the
hairstyle-VAE’s reconstruction and not ground truth guide strands.

We first evaluate the neural upsampler. In Fig. 10, we show a few
representative hair models produced by the neural upsampler and
compare them with alternative methods including nearest-neighbor
(NN) and bilinear (BL) interpolation in both Euclidean and strand
latent spaces. To visualize the weight-maps intuitively, we factorize
the weight for bilinear interpolation into individual guide strands
and colorize each pixel based on the standard deviation (std) of the
weights. Larger std values indicate sharp transitions, while smaller
std values reflect smooth interpolations. The emerging grid-like

structure illustrates how interpolation is inhibited when close to the
guides and parting lines, while being smooth otherwise. To make
artifacts more obvious, we remove all strands that penetrate the
head mesh. In the first row of Fig. 10, our learned upsampler not only
preserves the parting line but also avoids aliasing patterns observed
in the NN interpolation (column 3 & 5). The presence of baldness in
the bilinear interpolations (column 4 & 6) indicates severe penetra-
tions when interpolating strands from opposite sides of the parting
line. In the second row, our estimated parting line correctly ends
before the fringe. Additionally, we report the percentage of hairs
that penetrate the head mesh after upsampling in Tab. 4. Our neural
upsampler stands out with a very low penetration rate, indicating
that it accurately identifies most hairstyle parting lines. Please see
Appendix A for more results of the neural upsampler.

10 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

Fig. 12. Averaging two curly strands (column 1, blue strands) based
on spatial representations (column 2 and 3, magenta strand) results in
straight strands in both original space and latent space. While frequency
representation (column 4, magenta strand) preserves the curliness, averaging
in the latent space (column 5, magenta strand) gives the most natural result.

Fig. 13. The frequency hairstyle-VAE (ours) achieves significantly better
local variety while other alternatives with different strand representations
or latent spaces suffer from over-smoothness.

In Fig. 11 we demonstrate the final results after the refinement
step. Each group presents three hair models produced from the
same output of the neural upsampler but with different user-defined
parameters. Note that the intricate wisp structures, such as the one
shown in the first row, fifth column, are rarely seen in previous
works. The high fidelity of these structures is a result of our strand-
level representation of hair models in the frequency latent space.
Please find more results in Appendix A.

4.3 Ablation Study
In this section, we provide justifications for the important technical
choices made in our approach. We first explain why our frequency
representation of strands leads to a better latent space compared to
conventional spatial coordinates. Then, we demonstrate the superi-
ority of our GAN-based neural upsampler over other alternatives
for strand-map upsampling. Lastly, we highlight the suitability of
our hierarchical structure for representing a hair model.

Strand VAE. Our method begins by constructing a compact latent
space for strands, which effectively reduces the dimensionality
while preserving high-fidelity shape information. Among various
shape features, we consider length and curliness to be the most
crucial ones. We opt to build the strand latent space in the fre-
quency domain (frequency latent space), motivated by the fact that

Table 5. Positional error (pos. err.) and relative messiness (rel. mes.) for
hairstyle-VAE variants. The unit is millimeter. Our method has better
reconstruction error and also similar levels of hair messiness as the ground
truth data. Other models are either over-smooth or less accurate.

latent space original space
freq. (ours) spat. dense spat. freq.

pos. err. 7.25 7.08 9.80 7.07 8.47
rel. mes. -0.05 -0.11 -0.23 -0.20 -0.08

the Fourier spectrum explicitly encodes both features. In contrast,
spatial coordinates do not directly represent curliness, so that the
latent space thereon (spatial latent space) is not always consistent
with respect to curliness. Consequently, two visually similar curly
strands may be embedded far apart in this spatial latent space, while
a straight strand and a curly strand may appear closer to each other.
Such counter-intuitive issues are avoided in the frequency latent
space. To validate this claim, we conduct additional experiments
by training a separate strand-VAE model using spatial coordinates
(spatial strand-VAE) and subsequently a hairstyle-VAE based on it
(spatial hairstyle-VAE). We refer to our main models in the frequency
domain as frequency strand-VAE and frequency hairstyle-VAE.
We first present an intuitive explanation for our reasoning in

Fig. 12. We pick two curly hairs from our dataset and average them
based on their spatial coordinates. The resulting strand appears
straight and loses its curliness (column 2). Averaging in the spatial
latent space leads to a similar outcome (column 3). In contrast, if the
averaging is performed on the frequency codeV , the curliness is
better preserved (column 4). The most meaningful result is obtained
when the averaging is conducted in the frequency latent space
(column 5). This is because, in the frequency domain, the averaging
is applied independently to the amplitudes and phases. If both source
strands have similar amplitudes but different phases, their mean will
maintain the amplitude (i.e., curliness) while undergoing a phase
shift. Consequently, the frequency latent space aligns better with the
human perception of hair shapes, where curly and straight strands
are distinguished regardless of their spatial proximity. Please find
more results of strand interpolation in Appendix B.
This inherent structural distinction between the spatial and fre-

quency strand latent spaces significantly influences the performance
of the hairstyle-VAEs residing within them. This impact is shown in
Fig. 13, where the frequency hairstyle-VAE (2nd column) exhibits a
high level of local variety that closely resembles the ground truth,
while the spatial hairstyle-VAE (3rd column) produces overly smooth
results. In real hairstyles, it is quite common for adjacent strands to
grow in opposite directions, resulting in interesting local variations.
However, the embeddingwithin the spatial domain tends to diminish
such local variety, whereas the frequency domain preserves it better.
To quantitatively assess local variation, we introduce the messi-

ness metric, defined as follows. For each strand 𝑖 , we calculate its
mean deviation relative to its neighbors:

D𝑖 =
1

|N𝑖 |
∑︁
𝑗∈N𝑖

1
𝑁𝑠 − 1

𝑁𝑠−1∑︁
𝑘=1

| |𝒅𝑖,𝑘 − 𝒅 𝑗,𝑘 | |2, (8)

GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations • 11

Fig. 14. Densification results from different upsamplers. Our method
(column 1& 2) works well on diverse hairstyles. Trainingwith full supervision
(column 3 & 4) is comparable to bilinear interpolation. Directly learning
strand geometry fails to converge (column 5).

where N𝑖 represents the neighbors of strand 𝑖 , and 𝑑𝑖,𝑘 denotes the
parent-relative displacement of vertex 𝑘 of strand 𝑖 . The messiness
metric is defined as the mean D𝑖 of all strands, characterizing the
uniformity of a hair model. A higher messiness value indicates
greater local variety, while a lower value suggests a regular and
smooth hairstyle. We report the difference in messiness relative to
the ground truth dataset (0.428mm), where a lower value indicates a
smoother result. As shown in Tab. 5 (rel. mes.), although our method
produces a slightly more regular outcome compared to the ground
truth, the spatial hairstyle-VAE exacerbates the gap, resulting in a
doubling of the difference in messiness.
Notably, while positional encoding (PE) [Mildenhall et al. 2020]

shares certain high-level similarities with discrete Fourier transform
(DFT), they are substantially different in our context. PE considers
the coordinates individually and expands each scalar value to a high-
dimensional vector, while DFT considers a sequence and transforms
it into the Fourier domain with the same dimension. For comparison,
we train another strand-VAE based on PE and a corresponding
hairstyle-VAE, and observe similar local over-smoothness (relative
messiness: -0.11) as the vanilla spatial representation. This is because
PE does not considers the strand shape as a whole. The average pos.
error (strand-VAE: 1.70mm, hairstyle-VAE: 6.89mm) is also similar.

Neural Upsampler. The challenge of hair densification is two-fold.
Firstly, the sparse guide strands only provide a general depiction of
the overall hairstyle, making the mapping to dense hair strands
indeterminate without unique ground truth. Secondly, humans
perceive hairstyles holistically rather than focusing on individual
strands. Per-strand supervision becomes impractical when dealing
with as many as 25K strands. Therefore, we choose to adopt a GAN
model for perceptual supervision.

To highlight the advantages of our GAN-based neural upsampler,
we train an alternative model using full supervision. The ground
truth data is generated by downsampling the hair models in our
database. However, we find that this model cannot be effectively opti-
mized and only converges to a local optimum that closely resembles
bilinear interpolation. This occurs because the model attempts to
learn a deterministic mapping that does not exist. The weight maps
and qualitative results of this fully supervised model exhibit similar

unnatural artifacts as bilinear interpolation and lack awareness of
parting lines, as shown in Fig. 14 (column 3 & 4).
We choose to predict interpolation weights instead of strand

geometry due to the greater constraints imposed on the weights.
This leads to more stable training for the fragile GAN model. As
an ablation analysis, we train another model that directly predicts
strand latent codes using a discriminator loss. This model fails to
converge to a valid solution and only generates meaningless strands,
as shown in Fig. 14 (column 5) and Tab. 4 (column latent pred.).

Hierarchical Structure. Representing hairstyles with a hierarchical
structure is one of our main design choices. We demonstrate the
necessity of each level in the following analysis. At the strand level,
encoding strands into a low-dimensional latent space effectively
simplifies the generation task. To verify this, we conduct an ablation
study by removing the strand-level abstraction.We train two alterna-
tive hairstyle-VAE models that directly take strand geometries from
the original space. These models are denoted as ori. spat. (strands
represented as spatial gradients S̄ in the original space) and ori.
freq. (strands represented as frequency codes V in the original
space). They share the same network structure as our standard
hairstyle-VAE, except for different input and output dimensions.
The quantitative evaluations are reported in Tab. 5. Although the
ori. spat. variant achieves a slightly lower positional error, it suffers
from over-smoothness, as shown in Fig. 13 (4th column). On the
other hand, the ori. freq. variant produces a considerably worse
reconstruction error, reported in Tab. 5.
At the hairstyle level, we utilize a set of sparse guide strands to

describe a hair model instead of dense strands. Using guide strands
as an intermediate descriptor is crucial for reducing the complexity
of the task. In our case, dense strands are represented by a latent-map
of shape 216×288×65, containing more data than a high-resolution
(1280 × 1024) RGB image. Compressing such a large amount of data
into a low-dimensional vector poses a challenging task in its own
right, let alone that no control is provided to the user in such an
end-to-end model. For the ablation study, we remove the sparse
guide strands level modeling and train an alternative hairstyle-VAE
model that learns the mapping directly from dense strands to a
single latent hairstyle vector, denoted as dense in Tab. 5. Despite
having 1.6 times more parameters than the combined hairstyle-VAE
and neural upsampler, this model still has worse reconstruction
error and struggles with local over-smoothness.

4.4 Application: Quasi-Static Simulation
As an example application based on the latent representation of a
hairstyle, we introduce a quasi-static simulator. Regarding the shape
of a hairstyle with the straight head pose as the rest state, the neural
simulator estimates hair deformation driven by different head poses.
We model hair in the head coordinate frame, where the head is fixed
while the direction of gravity can vary. Thus, the task is formulated
as predicting strand deformation given a specific gravity direction.

Our quasi-static simulator is a neural network that takes as input
a reference latent code 𝒍𝑟 ∈ R𝐷𝑠 of the target strand under standard
gravity (−𝑦 direction), the position of the strand root 𝒑1 ∈ R3, and
the new direction of gravity 𝒉 ∈ R3. The output is the latent code

12 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

Fig. 15. Our neural simulator gives plausible estimations for diverse
hairstyles and head poses. It runs in real-time for up to 3K hairs, while
conventional industrial simulators may take minutes.

of the deformed strand. We design the network to be of 33 fully-
connected layers with 1024 hidden units and residual connections,
optimized using the L2 loss of the target latent codes. The training
data is built from GroomHair where the head is randomly tilted
and the equilibrium state of the guide strands is simulated using
Houdini. The deformed strand geometries are embedded into the
strand latent space with the pre-trained strand-VAE.
As shown in Tab. 2 the average error of the neural simulator

is only 9mm. In Fig. 15, we provide qualitative results where the
predicted deformation closely matches the ground truth. Compared
to conventional methods, the neural simulator is faster by 3 magni-
tudes (Tab. 1), but still achieves satisfying quality, suggesting that
the latent representation can support complex downstream tasks.

5 CONCLUSION
In this paper, we present the first generative hair model capable
of automatically synthesizing diverse hairstyles. We demonstrate
the effectiveness of embedding hairstyles into latent spaces with
significantly fewer parameters through hierarchical decomposition.
The strand latent space, based on frequency components, reduces
dimensionality while preserving fidelity. The hairstyle latent space is
well-constrained for generating guide strands. The neural upsampler
effectively densifies guide strands into dense hairs, and the heuristic
refinement process produces realistic final results with user control.

Limitations. First, the generation capability of our model is in-
herently bounded by the diversity of the dataset. The majority of
the dataset comprises everyday hairstyles, while certain styles like

Fig. 16. Failure cases that are generated from random sampling. Top row:
unnatural hairstyles do not conform to human aesthetics. Bottom row:
physical artifacts such as penetration and flying long strands.

braids are not adequately represented. Second, the entire system
is trained on a specific head shape, embedded within the network
weights. While the UV parameterization allows for adaptation of
generated hair models to different head shapes to a certain extent,
penetrations may still occur since no explicit information about the
head mesh is provided to the system. Lastly, our current system does
not explicitly consider physical attributes. The empirically devised
wisp formation and penetration refinement steps lack a solid phys-
ical foundation, and the neural simulator infers hair deformation
solely based on the rest shape and pre-defined gravity. In Fig. 16 we
show a few failure cases from random generation.

Applications. The primary application of this work is automatic
hairstyle generation. With the well-structured hairstyle latent space
and the refinement steps, our method is capable of generating hair
models that go beyond the training data to a certain extent. The
hierarchical modularization of the pipeline also allows for human
involvement, where artists can edit the generated guide strands
before the automatic densification step or fine-tune the heuristic
parameters for more precise control during the refinement stage.
Additionally, we anticipate that the strand and hairstyle latent space
can serve as reliable priors for hair geometry acquisition, leading to
a hair capturing system that starts by optimizing the hairstyle and
strand latent codes to fit the observed data.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
and suggestions, Denis Zen formodeling the hairstyles in the dataset,
Shunsuke Saito for helping with the comparison, Xinyu Yi for
proofreading, Daoye Wang for code review, and Erroll Wood and
Chenglei Wu for fruitful discussions.

REFERENCES
Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative

Adversarial Networks. In ICML 2017, Vol. 70. 214–223.
Thabo Beeler, Bernd Bickel, Gioacchino Noris, Paul A. Beardsley, Steve Marschner,

Robert W. Sumner, and Markus H. Gross. 2012. Coupled 3D reconstruction of sparse
facial hair and skin. ACM Trans. Graph. 31, 4 (2012), 117:1–117:10.

Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy,
and Jean Luc Lévêque. 2006. Super-helices for predicting the dynamics of natural
hair. ACM Trans. Graph. 25, 3 (2006), 1180–1187.

GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations • 13

Florence Bertails, Basile Audoly, Bernard Querleux, Frédéric Leroy, Jean Luc Lévêque,
and Marie-Paule Cani. 2005. Predicting Natural Hair Shapes by Solving the Statics
of Flexible Rods. In Eurographics 2005. 81–84.

Menglei Chai, Linjie Luo, Kalyan Sunkavalli, Nathan Carr, Sunil Hadap, and Kun Zhou.
2015. High-quality hair modeling from a single portrait photo. ACM Trans. Graph.
34, 6 (2015), 204:1–204:10.

Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin Weng, and Kun Zhou. 2016. AutoHair:
fully automatic hair modeling from a single image. ACM Trans. Graph. 35, 4 (2016),
116:1–116:12.

Menglei Chai, Lvdi Wang, Yanlin Weng, Xiaogang Jin, and Kun Zhou. 2013. Dynamic
hair manipulation in images and videos. ACM Trans. Graph. 32, 4 (2013), 75:1–75:8.

Menglei Chai, Lvdi Wang, Yanlin Weng, Yizhou Yu, Baining Guo, and Kun Zhou. 2012.
Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4 (2012),
116:1–116:8.

Menglei Chai, Changxi Zheng, and Kun Zhou. 2014. A reduced model for interactive
hairs. ACM Trans. Graph. 33, 4 (2014), 124:1–124:11.

Menglei Chai, Changxi Zheng, and Kun Zhou. 2017. Adaptive Skinning for Interactive
Hair-Solid Simulation. IEEE Trans. Vis. Comput. Graph. 23, 7 (2017), 1725–1738.

Tamar Flash and Neville Hogan. 1985. The Coordination of Arm Movements: An
Experimentally Confirmed Mathematical Model. Journal of Neuroscience 5, 7 (1985),
1688–1703.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In NIPS 2014. 2672–2680.

Peng Guan, Leonid Sigal, Valeria Reznitskaya, and Jessica K. Hodgins. 2012. Multi-linear
Data-Driven Dynamic Hair Model with Efficient Hair-Body Collision Handling. In
SCA 2012. 295–304.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. In CVPR 2016. 770–778.

Tomás Lay Herrera, Arno Zinke, and Andreas Weber. 2012. Lighting hair from the
inside: a thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6 (2012),
146:1–146:9.

Liwen Hu, Derek Bradley, Hao Li, and Thabo Beeler. 2017. Simulation-Ready Hair
Capture. Comput. Graph. Forum 36, 2 (2017), 281–294.

Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2014. Robust hair capture using
simulated examples. ACM Trans. Graph. 33, 4 (2014), 126:1–126:10.

Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2015. Single-view hair modeling
using a hairstyle database. ACM Trans. Graph. 34, 4 (2015), 125:1–125:9.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In ICML 2015, Vol. 37.
448–456.

Wenzel Jakob, Jonathan T. Moon, and Steve Marschner. 2009. Capturing hair assemblies
fiber by fiber. ACM Trans. Graph. 28, 5 (2009), 164.

Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture
for Generative Adversarial Networks. In CVPR 2019. 4401–4410.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In ICLR 2015.

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In ICLR
2014.

Zhiyi Kuang, Yiyang Chen, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2022. Deep-
MVSHair: Deep Hair Modeling from Sparse Views. In SIGGRAPH Asia 2022. 10:1–
10:8.

Shu Liang, Xiufeng Huang, Xianyu Meng, Kunyao Chen, Linda G. Shapiro, and Ira
Kemelmacher-Shlizerman. 2018. Video to fully automatic 3D hair model. ACM
Trans. Graph. 37, 6 (2018), 206.

Linjie Luo, Hao Li, Sylvain Paris, Thibaut Weise, Mark Pauly, and Szymon Rusinkiewicz.
2012. Multi-view hair capture using orientation fields. In CVPR 2012. 1490–1497.

Linjie Luo, Hao Li, and Szymon Rusinkiewicz. 2013. Structure-aware hair capture. ACM
Trans. Graph. 32, 4 (2013), 76:1–76:12.

Qing Lyu, Menglei Chai, Xiang Chen, and Kun Zhou. 2022. Real-Time Hair Simulation
With Neural Interpolation. IEEE Trans. Vis. Comput. Graph. 28, 4 (2022), 1894–1905.

Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and
Manmohan Chandraker. 2021. Modulated Periodic Activations for Generalizable
Local Functional Representations. In ICCV 2021. 14194–14203.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In ECCV 2020, Vol. 12346. 405–421.

Giljoo Nam, Chenglei Wu, Min H. Kim, and Yaser Sheikh. 2019. Strand-Accurate
Multi-View Hair Capture. In CVPR 2019. 155–164.

Kyle Olszewski, Duygu Ceylan, Jun Xing, Jose Echevarria, Zhili Chen, Weikai Chen,
and Hao Li. 2020. Intuitive, Interactive Beard and Hair Synthesis With Generative
Models. In CVPR 2020. 7444–7454.

Sylvain Paris, Héctor M. Briceño, and François X. Sillion. 2004. Capture of hair geometry
from multiple images. ACM Trans. Graph. 23, 3 (2004), 712–719.

Sylvain Paris, Will Chang, Oleg I. Kozhushnyan, Wojciech Jarosz, Wojciech Matusik,
Matthias Zwicker, and Frédo Durand. 2008. Hair photobooth: geometric and

photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3 (2008), 30.
Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks. In ICLR 2016.
Qiaomu Ren, Haikun Wei, and Yangang Wang. 2021. Hair Salon: A Geometric Example-

Based Method to Generate 3D Hair Data. In ICIG 2021, Vol. 12890. 533–544.
Radu Alexandru Rosu, Shunsuke Saito, Ziyan Wang, Chenglei Wu, Sven Behnke, and

Giljoo Nam. 2022. Neural Strands: Learning Hair Geometry and Appearance from
Multi-view Images. In ECCV 2022, Vol. 13693. 73–89.

Shunsuke Saito, Liwen Hu, Chongyang Ma, Hikaru Ibayashi, Linjie Luo, and Hao Li.
2018. 3D hair synthesis using volumetric variational autoencoders. ACM Trans.
Graph. 37, 6 (2018), 208.

Yuefan Shen, Changgeng Zhang, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2021.
DeepSketchHair: Deep Sketch-Based 3D Hair Modeling. IEEE Trans. Vis. Comput.
Graph. 27, 7 (2021), 3250–3263.

Tiancheng Sun, Giljoo Nam, Carlos Aliaga, Christophe Hery, and Ravi Ramamoorthi.
2021. Human Hair Inverse Rendering using Multi-View Photometric data. In EGSR
2021. 179–190.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. 2016. Instance Normalization:
The Missing Ingredient for Fast Stylization. CoRR abs/1607.08022 (2016).

LvdiWang, Yizhou Yu, Kun Zhou, and Baining Guo. 2009. Example-based hair geometry
synthesis. ACM Trans. Graph. 28, 3 (2009), 56.

Ziyan Wang, Giljoo Nam, Tuur Stuyck, Stephen Lombardi, Michael Zollhöfer, Jessica K.
Hodgins, and Christoph Lassner. 2022. HVH: Learning a Hybrid Neural Volumetric
Representation for Dynamic Hair Performance Capture. In CVPR 2022. 6133–6144.

Yichen Wei, Eyal Ofek, Long Quan, and Heung-Yeung Shum. 2005. Modeling hair from
multiple views. ACM Trans. Graph. 24, 3 (2005), 816–820.

Sebastian Winberg, Gaspard Zoss, Prashanth Chandran, Paulo F. U. Gotardo, and Derek
Bradley. 2022. Facial hair tracking for high fidelity performance capture. ACM Trans.
Graph. 41, 4 (2022), 165:1–165:12.

Keyu Wu, Yifan Ye, Lingchen Yang, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2022.
NeuralHDHair: Automatic High-fidelity Hair Modeling from a Single Image Using
Implicit Neural Representations. In CVPR 2022. 1516–1525.

Zexiang Xu, Hsiang-Tao Wu, Lvdi Wang, Changxi Zheng, Xin Tong, and Yue Qi. 2014.
Dynamic hair capture using spacetime optimization. ACM Trans. Graph. 33, 6 (2014),
224:1–224:11.

Lingchen Yang, Zefeng Shi, Youyi Zheng, and Kun Zhou. 2019. Dynamic hair modeling
from monocular videos using deep neural networks. ACM Trans. Graph. 38, 6 (2019),
235:1–235:12.

Meng Zhang, Menglei Chai, HongzhiWu, Hao Yang, and Kun Zhou. 2017. A data-driven
approach to four-view image-based hair modeling. ACM Trans. Graph. 36, 4 (2017),
156:1–156:11.

Qing Zhang, Jing Tong, Huamin Wang, Zhigeng Pan, and Ruigang Yang. 2012.
Simulation Guided Hair Dynamics Modeling from Video. Comput. Graph. Forum 31,
7 (2012), 2003–2010.

Yujian Zheng, Zirong Jin, Moran Li, Haibin Huang, Chongyang Ma, Shuguang Cui, and
Xiaoguang Han. 2023. HairStep: Transfer Synthetic to Real Using Strand and Depth
Maps for Single-View 3D Hair Modeling. In CVPR 2023. 12726–12735.

Yi Zhou, Liwen Hu, Jun Xing, Weikai Chen, Han-Wei Kung, Xin Tong, and Hao Li. 2018.
HairNet: Single-View Hair Reconstruction Using Convolutional Neural Networks.
In ECCV 2018, Vol. 11215. 249–265.

14 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

A ADDITIONAL RESULTS
In Fig. 17, we present the raw outputs of the neural upsampler to
evaluate its densification power as an individual module. In Fig. 18
we demonstrate various combinations of the user parameters.

B STRAND INTERPOLATION
In Fig. 19, we compare interpolation trajectories of two distinct
strands in different latent spaces. Interpolation in the spatial latent
space demonstrates unstable curvature changes, while interpolation
in the frequency latent space aligns better with human perception.
Moreover, we quantitatively examine the jittering effect during

strand interpolation with different representations. We randomly
select 10K strand paris from the test set and perform interpola-
tion between them with 98 intermediate sample points. For each
interpolation sequence, we then compute the jitter metric [Flash
and Hogan 1985], defined as the third derivative of position by
assuming the time interval is 1 second, where a smaller value means
a smoother transition. As shown in Tab. 6, the transition in the
frequency latent representation is as smooth as the spatial-latent
representation with better curvature preservation. This suggests
that the frequency-latent space is better structured.

C PENETRATION REFINEMENT
Our system is based on the same head geometry and the detailed
head shape is not explicitly considered. Although the shape infor-
mation is partially baked into the weights of the neural networks,
penetrations still happen occasionally. To mitigate the penetration
artifacts and preserve the hair structure as much as possible, the
following refinement is performed. For each strand in the Euclidean
space, we traverse its vertices from root to tail. At vertex 𝒑𝑖 , we
check if the vertex ahead, 𝒑𝑖+𝑘 , is within the head mesh using a
pre-computed signed distance field. If 𝒑𝑖+𝑘 is inside the mesh, we
compute the minimal rotation angle 𝜃 that pushes 𝒑𝑖+𝑘 out of the
mesh along the normal 𝒏 of the nearest surface with 𝒑𝑖 as the
rotation pivot and 𝒃 = (𝒑𝑖+𝑘 − 𝒑𝑖) × 𝒎 as the axis. The vertices
𝒑 𝑗 (𝑗 >= 𝑖) are rotated by 𝜃𝑖 = 𝜃 ∗ 𝛿 𝑗−𝑖−𝑘/2. After traversing all the
vertices, we remove the strands that still penetrate the head mesh.
We empirically set 𝑘 = 20, 𝛿 = 0.9 for all experiments.

Fig. 17. Raw outputs from our neural upsampler. It effectively populates
the guide hairs, preserves the shape, keeps the parting lines, and avoids
unnatural patterns.

Table 6. The jitter metrics of strand interpolations in different domains.
While vanilla Euclidean interpolation is most smooth, our latent representa-
tion in the frequency space is similarly smooth as the spatial one.

Euclidean spatial-latent frequency-latent
jitter (mm/s3) 0.69 0.89 0.97

Table 7. Detail structure of the hairstyle-VAE model (encoder part). The
decoder is symmetric. The residual connections are between layers 1 & 3, 4
& 6, and 7 & 9 using bilinear downsampling. Layer 11 gives the final output
with 1024 channels, half of which represents the latent vector while the
other half is the log variation used for the reparameterization trick in VAE
training. Layer 12 is used in the residual connection between layer 1 and 3
to align the number of channels after downsampling.

layer number input size convolution
1 24 × 32 × 65 (1, 1, 65, 2048, 1)
2 24 × 32 × 2048 (3, 3, 2048, 2048, 2)
3 12 × 16 × 2048 (1, 1, 2048, 512, 1)
4 12 × 16 × 512 (1, 1, 512, 2048, 1)
5 12 × 16 × 2048 (3, 3, 2048, 2048, 2)
6 6 × 8 × 2048 (1, 1, 2048, 512, 1)
7 6 × 8 × 512 (1, 1, 512, 2048, 1)
8 6 × 8 × 2048 (3, 3, 2048, 2048, 2)
9 3 × 4 × 2048 (1, 1, 2048, 512, 1)
10 3 × 4 × 512 (3, 4, 512, 1024, 1)
11 1 × 1 × 1024 (1, 1, 1024, 1024, 1)
12 12 × 16 × 65 (1, 1, 65, 512, 1)

Table 8. Detail structure of the neural upsampler (generator part). The
discriminator is the same except the first and last layers. The residual
connections are between layers 4 & 6, 7 & 9, and 10 & 12.

layer number input size convolution
1 216 × 288 × 364 (1, 1, 128, 364, 1)
2 216 × 288 × 128 (13, 13, 128, 128, 1)
3 216 × 288 × 128 (1, 1, 128, 128, 1)
4 216 × 288 × 128 (1, 1, 128, 128, 1)

5 - 6 same as layer 2 - 3
7 - 9 same as layer 4 - 6
10 - 11 same as layer 4 - 5
12 216 × 288 × 128 (1, 1, 128, 5, 1)

D NETWORK STRUCTURES
In Tab. 7 and Tab. 8 we provide the detailed structure of our hairstyle-
VAE and neural upsampler, respectively. The input size is formatted
as ℎ × 𝑤 × 𝑐 where ℎ, 𝑤 , and 𝑐 are height, width, and channels.
The convolution is formatted as (kernel height, kernel width, input
channels, output channels, stride).

E QUALITATIVE COMPARISON WITH VHV
To qualitatively compare our model with the seminal work of VHV
[Saito et al. 2018], in Fig. 20, we present VHV reconstruction re-
sults of the rendered hair models generated by our method. While

GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations • 15

Fig. 18. Hair models from the same guide strands but varied user parameters.

Fig. 19. Interpolation trajectories between a short strand and a long wavy
strand in different latent spaces. Top: spatial latent space; Bottom: frequency
latent space. The frequency representation preserves the curvature better.

VHV can recover the overall hairstyle well, some strand- and wisp-
level details are missing, partially due to the limited capability of
volumetric representations. Furthermore, some styles, such as the
bottom-right hair model, are beyond the coverage of VHV. Note that
this is not a strictly fair comparison as VHV is reconstructing the
hair model only from a single-view image, and the face alignment
step in the original method does not work on our non-photorealistic
face rendering.

Fig. 20. VHV reconstruction results of the rendered hair models generated
by our method. While the overall hairstyles are successfully recovered, the
reconstructions suffer from over-smoothing and lack of high-fidelity details.

F DATASET
In Fig. 21we visualize the complete list of 35 base hairstyle categories
that constitute our dataset, which covers awide variety of hairstyles.

16 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

Fig. 21. All 35 base hairstyle categories of our dataset.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Strand Latent Space
	3.2 Scalp Space Hairstyle Parameterization
	3.3 Hairstyle Latent Space
	3.4 Neural Upsampling
	3.5 Heuristic Refinement

	4 Experiments and Applications
	4.1 Datasets, Training, and Runtime
	4.2 Evaluation
	4.3 Ablation Study
	4.4 Application: Quasi-Static Simulation

	5 Conclusion
	Acknowledgments
	References
	A Additional Results
	B Strand Interpolation
	C Penetration Refinement
	D Network Structures
	E Qualitative Comparison with VHV
	F Dataset

