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ABSTRACT

We address the challenging problem of jointly inferring the 3D flow and volumet-
ric densities moving in a fluid from a monocular input video with a deep neural
network. Despite the complexity of this task, we show that it is possible to train the
corresponding networks without requiring any 3D ground truth for training. In the
absence of ground truth data we can train our model with observations from real-
world capture setups instead of relying on synthetic reconstructions. We make
this unsupervised training approach possible by first generating an initial proto-
type volume which is then moved and transported over time without the need for
volumetric supervision. Our approach relies purely on image-based losses, an
adversarial discriminator network, and regularization. Our method can estimate
long-term sequences in a stable manner, while achieving closely matching targets
for inputs such as rising smoke plumes.

1 INTRODUCTION

Estimating motion is a fundamental problem, and is studied for a variety of settings in two and three
dimensions (Ranjan & Black, 2017; Hur & Roth, 2021; Gregson et al., 2014). It is also a highly
challenging problem, since the motion u is a secondary quantity that typically can’t be measured
directly and has to be recovered from changes observed in transported markers ρ. We focus on
volumetric, momentum-driven materials like fluids, where in contrast to the single-step estimation
in optical flow (OF), motion estimation typically considers multiple coupled steps to achieve a sta-
ble global transport. Furthermore, in this setting the volume distribution of markers ρ is usually
unknown and needs to be reconstructed from the observations in parallel to the motion estimation.

So far, most research is focused on the reconstruction of single scenes. Classic methods use an opti-
mization process working with an explicit volumetric representation (Eckert et al., 2019; Zang et al.,
2020; Franz et al., 2021) while some more recent approaches optimize single scenes with neural
fields (Mildenhall et al., 2020; Chu et al., 2022). As such an optimization is typically extremely
costly, and has to be redone for each new scene, training a neural network to infer an estimate of
the motion in a single pass is very appealing. Similar to most direct optimizations, existing neu-
ral network methods rely on multiple input views to simplify the reconstruction (Qiu et al., 2021).
However, this severely limits the settings in which inputs can be captured, as a fully calibrated lab
environment is often the only place where such input sequences can be recorded.

The flexibility of motion estimation from single views makes them a highly attractive direction, and
physical priors in the form of governing equations make this possible in the context of fluids (Eckert
et al., 2018; Franz et al., 2021). Nonetheless, despite using strong priors, the single viewpoint makes
it challenging to adequately handle the otherwise fully unconstrained depth dimension. We target
a deep learning-based approach where a neural network learns to represent the underlying motion
structures, such that almost instantaneous, single-pass motion inference is made possible without
relying on ground truth motion data. The latter is especially important for complex volumetric
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motions, as reference motions of real fluids can not be acquired directly. Instead, one has to work
with reconstructions or even simulated data, suffering from a mismatch between the observations
and the synthetic motion data. While obtaining multiple calibrated captures for training is feasible,
using additional views only for losses results in issues with the depth ambiguity of single-view
inputs.

In this work, we address the challenging problem of training neural networks to infer 3D motions
from monocular videos in scenarios where no 3D reference data is available. To the best of our
knowledge, we are to first to propose an end-to-end approach, denoted by Neural Global Transport
(NGT) in the following, which

(i) yields a neural network to estimate a global, dense 3D velocity from a single-view image
sequence without requiring any 3D ground truth as targets. Among others, this is made
possible by a custom 2D-to-3D UNet architecture.

(ii) We address the resulting depth-ambiguity problem using a new approach with differentiable
rendering and an adversarial technique.

(iii) A single network trained with the proposed approach generalizes across a range of different
inputs, vastly outperforming optimization-based approaches in terms of performance.

2 RELATED WORK

Optical flow Flow estimation is of great interest in a multitude of settings, from 2D optical flow
over scene flow to the capture and physically accurate reconstruction of volumetric fluid flows. Op-
erating on a pair of 2D images, optical flow estimates a motion that maps one to the other (Sun
et al., 2014). In this setting, multi-scale approaches in the form of spatial pyramids are a longstand-
ing technique to handle displacements of different scales (Glazer, 1987). More recent CNN-based
methods also employ spatial pyramids (Dosovitskiy et al., 2015; Ranjan & Black, 2017) and can
learn to estimate optical flow in an unsupervised fashion (Ahmadi & Patras, 2016; Yu et al., 2016;
Luo et al., 2021).

Scene flow Scene flow (Vedula et al., 1999) bridges the gap to 3D where earlier approaches using
energy minimization or variational methods(Zhang & Kambhamettu, 2001; Huguet & Devernay,
2007) have been surpassed by CNNs that bring superior runtime performance while retaining state-
of-the-art accuracy (Ilg et al., 2018; Saxena et al., 2019) and can also be trained without the need
for ground truth data (Lee et al., 2019; Wang et al., 2019). Flow estimation from a single input is of
particular importance as it vastly simplifies the data acquisition and several methods for monocular
scene flow have been proposed (Brickwedde et al., 2019; Yang & Ramanan, 2020; Luo et al., 2020).
These can be un- or self-supervised (Ranjan et al., 2019; Hur & Roth, 2020) and benefit from using
multiple frames (Hur & Roth, 2021).

Fluid flow Fluid flows are traditionally extremely difficult to capture and methods ranging from
Schlieren imaging Dalziel et al. (2000); Atcheson et al. (2008; 2009) and particle imaging ve-
locimetry (PIV) methods Grant (1997); Elsinga et al. (2006); Xiong et al. (2017) over laser scan-
ners Hawkins et al. (2005); Fuchs et al. (2007) to structured light Gu et al. (2013) and light path Ji
et al. (2013) approaches all require specialized setups. The use of multiple commodity cameras sim-
plifies the acquisition (Gregson et al., 2014; Eckert et al., 2019) and allows for view-interpolation
to create additional constrains (Zang et al., 2020). Few works have attempted to solve monocular
flow estimation in the fluids setting. For single-scene optimization Eckert et al. (2018) constrain the
motion along the view depth, while Franz et al. (2021) use an adversarial approach to regularize the
reconstruction from unseen views. Qiu et al. (2021) have proposed a network that can estimate a
long-term motion from a single view, but still require 3D ground truth for training.

3D reconstruction In the context of fluids it is common to also reconstruct an explicit representa-
tion of the transported quantities. Such 3D reconstruction is typically addressed for clearly visible
surfaces (Musialski et al., 2013; Koutsoudis et al., 2014) where some of the algorithms that have
been proposed can incorporate deformations (Zang et al., 2018; Kato et al., 2018). In this context,
volumetric reconstructions make use of voxel grids (Papon et al., 2013; Moon et al., 2018), or more
recently neural network representations Sitzmann et al. (2019a); Lombardi et al. (2019); Sitzmann
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et al. (2019b); Mildenhall et al. (2020). Learned approaches have likewise been used to recover
volumetric scene motions, e.g., for moving human characters (Mescheder et al., 2019) or to separate
static and dynamic parts (Chu et al., 2022). For coupling with visual observations, several differ-
entiable rendering frameworks have been proposed (Kato et al., 2020; Zhang et al., 2021). These
where used to constrain unseen views of static volumes (Henzler et al., 2018; 2019) and to recon-
struct objects from single images as SDF (Jiang et al., 2020). Considering fluids, corresponding
approaches where used in the context of SPH Schenck & Fox (2018), for the initialization of a water
wave simulator Hu et al. (2020), to realize style transfer onto 3D density field Kim et al. (2019a;
2020), and for monocular flow reconstruction (Franz et al., 2021).

3 METHOD

In this work we focus on the task of estimating a global 3D motion u of a volumetric quantity ρ
over time from a sequence of single view images Ît. To that end, we train a generator network Gu
to estimate the motion ut between two consecutive time steps ρt and ρt+1. In this context, a simple,
supervised method would match the output to a reference velocity ût+1 given a cost function such
as an L2 loss:

min
θ

∣∣∣∣Gu(ρt, ρt+1; θ)− ût+1
∣∣∣∣2 . (1)

However, as ground truth velocity targets are often not available, unsupervised methods instead
leverage a model for the underlying transport process. Given a differentiable discretization of the
transport A we can learn the motion in an unsupervised fashion by requiring that ρt should match
ρt+1 when A is applied:

min
θ

∣∣∣∣A(ρt,Gu(ρt, ρt+1; θ))− ρt+1
∣∣∣∣2 . (2)

As the image sequence Î represents projections of volumes that leave the formulation of equation 2
to be highly under-constrained, we impose further priors to ensure the training converges to desir-
able, unimodal solutions. Assuming that an initial state ρ0 is known, we define a multi-step transport
as ρt = At(ρ0,u) = A(. . .A(ρ0,u0) . . . ,ut−1), and the target ρt+1 above is replaced by an image-
based loss from unsupervised 3D reconstruction (Zang et al., 2020; Franz et al., 2021). This loss is
realized via a differentiable image formation modelR such that the inferred volumetric state can be
compared to the observed target image Ît+1. In line withR, the network Gu is likewise conditioned
on the target image Ît+1, which yields the combined learning objective for our approach:

min
θ

∣∣∣∣∣∣R(A(ρt,Gu(ρt, Ît+1; θ)))− Ît+1
∣∣∣∣∣∣2 . (3)

While this formulation has the central advantage that it yields a globally coupled, end-to-end pro-
cess that does not require any volumetric targets, its under-constrained nature leads to a very chal-
lenging environment for learning tasks: In addition to the well-studied aperture problem of optical
flow Beauchemin & Barron (1995), the 3D nature of our setting introduces the problem of depth-
ambiguity: A single density observed in a pixel of Ît+1 can be satisfied by an arbitrary distribution
of densities along the corresponding viewing ray direction. In contrast to the aperture problem, sim-
ple regularizers such as smoothness do not suffice to address depth ambiguity. Below, we explain
our solution which uses an adversarial architecture.

3.1 DEPTH AMBIGUITY

For each target color along a ray, an infinite number of distributions of density along this ray exists,
e.g. larger and further away vs. smaller and closer. The existence of multiple parallel observations,
such as the pixels of an image, likewise does not guarantee uniqueness. One approach to address
this issue is to refer to multiple observations in the loss during training, as would be available from
a calibrated multi-view capture setup. However, since the network has no way to infer the unique
density distributions pertaining to these side targets from its single input view, such an approach typ-
ically leads to learning an suboptimally averaged solution. Instead, we address this depth-ambiguity
by expanding the simple target loss

LÎ =
∣∣∣∣∣∣R(ρt+1)− Ît+1

∣∣∣∣∣∣2 (4)
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Figure 1: Left: An overview over the complete NGT framework. We generate an initial density
volume ρ0 that is advected by the velocity to form a sequence. Density estimates are used in addition
to the single input image to guide and stabilize the velocity generation. Velocity training is done
end-to-end over the whole sequence. Right: Our multi-scale velocity estimator Gu, shown for 3
resolution scales. The inputs contain information about the current (t) and next (t + 1) time step.
Each scale generates a residual velocity potential which is used to advect the inputs of step t before
generating the next residual. The final velocity is divergence free due to using the curl∇×.

from equation 3, where ρt+1 = A(ρt,Gu(ρt, Ît+1; θ)), with the adversarial loss used by Henzler
et al. (2019) and Franz et al. (2021) to restrict ρ to a plausible appearance without imposing a specific
solution. Specifically, we follow previous work (Franz et al., 2021) and make use of a discriminator
D with an RaLSGAN objective (Jolicoeur-Martineau, 2019)

LD(ρt+1, l) = Epdata

[(
D(Ît+1)− Epview(ω)D(R(ρt+1, ω))− l

)2]
+ Epview(ω)

[(
D(R(ρt+1, ω))− EpdataD(Ît+1) + l

)2]
,

(5)

where ω are randomly sampled view directions and the label l is 1 or -1 when training D or using
it as loss, respectively. To focus on compact volumes and to prevent unnecessary scattering of
densities along the viewing direction, we add a depth-Loss Lz , assuming that the observed densities
are concentrated around position cz along the view’s depth direction, the z-axis in our case. Thus,
for every position p we regularize ρ depending on the distance to a center position cz

Lz = ρt+1(p)2((cz − pz)2/r)2, (6)
where pz is the projection of p on the primary view direction. As we choose cz to be in the center of
the grid, we normalize with half the grid resolution r. To further constrain and stabilize the estimated
velocity we introduce a prototype volume ρ̃t+1 generated from a single input image (see section 3.3)
as 3D target for the transported density. This again takes the form of a simple L2 loss:

Lρ̃ =
∣∣∣∣ρt+1 − ρ̃t+1

∣∣∣∣2 . (7)

3.2 ESTIMATING VOLUMETRIC MOTIONS

In addition to the current state ρt and the target image Ît+1, as indicated by equation 3, our generator
network also receives Ît, ρ̃t and ρ̃t+1 as input. The images are projected into the volume using
inverse ray-marching denoted by R−1, before being concatenated to the density fields. This way,
the inputs trivially match the target and rendering losses, are coherent between frames, and the
network can compare the back-projections and prototype volumes to estimate the 3D velocity based
on the current state ρt. Thus, the velocity estimation becomes

ut = Gu(ρt,R−1(Ît), ρ̃t,R−1(Ît+1), ρ̃t+1). (8)
The architecture of Gu further follows established multi-scale approaches of optical flow and scene
flow (Ranjan & Black, 2017), as shown in figure 1. A residual velocity ul is generated at several res-
olution scales l with the per-resolution network component denoted as Gul. Our Gu further utilizes
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weight sharing between scales (Luo et al., 2021), such that self-similar structures can be reused. In
combination, velocity generation for a single time step takes the recursive form of

utl = Gul(A(↓ρ
t ⊕R−1(It)⊕↓ ρ̃t,↑ utl−1),R−1(It+1), ρ̃t+1,↑ utl−1) +↑ utl−1, (9)

where ⊕ is concatenation along the channel dimension, ↑utl−1 is the up-sampled velocity of the
previous scale, ut0 = 0 and final velocity utL = GuL(. . . ), ↑ denotes up-sampling using quadratic
B-spline kernels, and ↓ is down-sampling using average pooling. The inputs from the current time-
step t are warped such that Gul only needs to estimate the residual velocity.

Even with the constraints of equations 4 to 7, considerably large solution spaces exist that reach
the target state, e.g., unphysical solutions that create mass. For this reason we include additional
constraints on magnitude, smoothness and divergence. For stability we enforce the CFL condition
on the residual of each velocity scale with an L2 loss on velocity magnitude, while smoothness is
constrained for the combined velocity on each scale. To respect mass conservation the velocity field
has to be divergence free, i.e. ∇ · u = 0. Instead of adding a divergence-freeness loss like most
previous work, we use a hard constraint (Kim et al., 2019b) that is compatible with the residual
multi-scale approach: we define u as the curl (∇×) of a vector potential as u = ∇ × Gu. As the
curl is a linear operator, ∇× (sF +G) = s∇× F +∇×G, with F,G being vector fields and s a
scalar, Equation 9 and the output of Gu are treated as a vector potential.

3.3 DENSITY ESTIMATION

Our motion estimation additionally hinges on a second network Gρ, whose role it is to estimate
individual volumetric densities ρ̃t from a single image Ît:

ρ̃t = Gρ(Ît; Φ). (10)

We employ this network for the prototype density loss 7 and to infer the initial distribution of markers
with ρ0 := ρ̃0 = Gρ(Î0; Φ), which was previously assumed to be known. As the challenges of the
single view estimation are similar for density and for velocity, using a generator network in the
already established GAN setting is a natural choice and we can reuse the losses as described above:
LGρ = LÎ +LD(Gρ,−1)+Lz . Gρ employs a custom mixed 2D/3D UNet-architecture. The encoder
processes 2D information, while the skip connections are realized viaR−1.

3.4 IMPLEMENTATION AND TRAINING

We implement NGT with TensorFlow in Python. The R and A operations are custom: For R, used
in both the target loss (equation 4) and LD, we use a differentiable volume ray-marching (Franz
et al., 2021), which supports attenuation, single-scattering, and the use of background images, but
is limited to isometrically scattering densities and fixed lighting. For the advection operator A
we employ a discrete, differentiable MacCormack advection scheme. First, we train Gρ alone on
individual frames, where we grow the resolution from 8 to 64 during training. Then we freeze Gρ
and train Gu with up to 5 advection-steps. We again grow the resolution of the velocity estimation
network, while the estimation of ρ0 and the advection happen on the maximum resolution, using
up-scaled velocities until Gu reaches the maximum resolution. D is trained during both density and
velocity training. We refer to appendix A for more details.

4 EVALUATION

We first present two ablations to illustrate the importance of handling depth ambiguity, and of the
prototype density volumes. We then evaluate the method in comparison to a series of learned and
optimization-based methods for a synthetic and a real-world dataset.

4.1 DEPTH AMBIGUITY

In Figure 2 we show the effect of depth ambiguity. If there is no depth variation, a network
can easily recover the object when using multiple target views in the loss (column 2), leading to
low volumetric and perceptual errors (table 1). If the object’s position is randomized (column 3),
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Reference, fix fix, multi, ¬D var, multi, ¬D var, single, ¬D var, multi,D var, single,D reference, var

reference, fix fix, multi, ¬D var, multi, ¬D var, single, ¬D var, multi,D var, single,D Reference, var

Figure 2: Depth-ambiguity ablation study with the shape dataset: In the top row all versions closely
match the input view while the side view (bottom) shows severe degradation when increasing depth
ambiguity by varying the position of the objects (fix → var) or using only the input view for LÎ
(multi → single). Providing additional views alongside the discriminator does not yield further
improvements. D by itself can recover a plausible configuration, even if the density does not exactly
match the unknown reference location.

Table 1: Quantitative evaluation of the depth-ambiguity issue as
seen in figure 2. Side uses 7 evenly distributed views. Lower
values are better for all metrics under consideration.

Input Side ρ
Version RMSE RMSE LPIPS FID RMSE
fix, multi, ¬D .0080 .0106 .0200 48 .260
var, multi, ¬D .0160 .0509 .1237 120 .636
var, single, ¬D .0042 .0681 .1345 98 .969
var, multi, D .0151 .0525 .1239 80 .642
var, single, D .0064 .0694 .1140 68 .930

the network can no longer settle
on a clear position as the added
variation in depth is not evident
from the single input. Thus, the
network is presented with multi-
ple solutions for the same input
over the course of the training,
severely deteriorating the qual-
ity and drastically increasing the
FID by 2.5 times. Simply re-
moving the multiple targets im-
proves the FID at the cost of
LPIPS, volume error, and visual quality. Adding the discriminator to the multi-target setup im-
proves the perceptual metrics, but visually the result still looks blurry. Keeping D but removing the
multiple targets further improves the perceptual quality, sharpening the results and improving FID to
68, at the cost of volumetric accuracy. In the end, the multiple target views hinder the discriminator
and lead to averaged solutions that are favoured by simple metrics such as RMSE, but have lower
perceptual scores. While the discriminator can not recover the true shape and depth location of the
sample, as indicated by the relatively high volume error, the compact density it produces nonetheless
represents a very good starting point for the motion estimation, given the single view input.

4.2 PROTOTYPE VOLUMES ρ̃

Using the prototype densities ρ̃ as explicit 3D constraint in the form of Lρ̃ may at first seem counter-
intuitive in the presence of the depth ambiguity. However, as the ρ̃ density volumes are generated
from single images, there is only a single ρ̃ associated with each input. This yields a reduction
of ambiguity for the task of Gu when using the prototypes as loss. Furthermore, we provide ρ̃t+1

as additional input to Gu, to simplify the task of motion inference. Overall, this highlights the
importance and central role of the novel 2D-to-3D UNet architecture. The addition of ρ̃ to the
velocity training stabilizes the inference of long sequences, as evident from figure 3 and table 3.
While there is not much difference in the early frames, the network lacking the stabilization clearly
diverges after evaluating 120 frames.

4.3 RESULTS

We evaluate our method on both synthetic smoke flows and the real-world captures from the
ScalarFlow dataset (Eckert et al., 2019). As a representative of simpler network architectures, i.e.
without multi-scale handling and the 2D-to-3D UNet, we combine the architecture from Qiu et al.
(2021) with our loss formulation. This combination is denoted by (RapidGen). We further compare
to the direct optimization algorithms of Eckert et al. (2019) (ScalarFlow) and Franz et al. (2021)
(GlobTrans). These can achieve better target matching and long-term transport because each scene
is optimized over the full trajectory individually, but this comes at the cost of vastly increased (more
than ×100) reconstruction times. Due to the large space of solutions for the single view problem in
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Frame 40, 0°, ¬ρ̃ Frame 40, 90°, ¬ρ̃ Frame 40, 0°, ρ̃ Frame 40, 90°, ρ̃

Frame 120, 0°, ¬ρ̃ Frame 120, 90°, ¬ρ̃ Frame 120, 0°, ρ̃ Frame 120, 90°, ρ̃

Figure 3: Adding the prototype volume ρ̃ produced by our 2D-to-3D UNet as guidance (right side)
stabilizes the inference over long evaluations and results in better target matching and a better overall
density distribution, especially from unseen views. Metrics can be found in table 3.

RapidGen Ours ScalarFlow GlobTrans Reference

Figure 4: Qualitative comparison between different approaches using synthetic plume data for time-
step 80. Top is the input view which all method match fairly well. Bottom is a 90° side view where
the shortcomings of the different approaches become visible. Due to the overshoot, ScalarFlow
densities are shown with a factor or 1/2.

a setting as chaotic as fluid dynamics, we evaluate the general appearance of the estimations with
the perceptual metric LPIPS (Zhang et al., 2018) and the Fréchet Inception Distance (FID) between
random views of the estimated sequences and random samples of input images to obtain a measure
of likeness in appearance. This allows us to asses how realistic the overall look of the plumes is.

4.3.1 SYNTHETIC PLUMES

We first evaluate our method with a synthetic data set consisting of simulated plumes of hot marker
densities in front of a black background. While the flows are relatively simple compared to their
real-world counterparts, the smooth density content makes it very difficult to estimate motions as
the differentiable advection relies on spatial gradients in the density for back-propagation. For com-
pleteness, we measure the accuracy of reconstructing the input image in column one of table 2, for
which all methods show a low error. Our goal is to estimate plausible solutions, rather than an exact
match to a reference, as the ambiguity in depth allows for many solutions that match the available
inputs. This can be seen particularly well in the volumetric comparisons, where our result has a
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Table 2: Quantitative evaluation of different methods trained on a synthetic plumes dataset.

Input Side Random ρ u
Algorithm RMSE RMSE LPIPS FID FID RMSE RMSE EPE
RapidGen .0145 .0277 .0450 105 76 1.65 .494 .851
Ours .0156 .0243 .0444 101 97 .431 2.06 3.29
ScalarFlow .116 .120 .158 135 106 1.39 .120 .104
GlobTrans .0122 .0440 .0877 87 30 .373 .143 .137

RapidGen

input view 0°

Ours ScalarFlow GlobTrans Reference

side view 300°

Figure 5: Qualitative comparison between different approaches using ScalarFlow data for time-step
100. Our method closely matches the given input and has a clearly defined shape that matches the
general shape of the reference. It is only surpassed by the costly single-scene reconstruction method
GlobTrans. RapidGen was adapted to be trained without 3D GT.

good match with the reference density with a RMSE of 0.431, but disagrees in terms of underlying
motion, leading to a high difference in the velocities. The corresponding videos still show a calm,
swirling motion similar to the reference. A visual comparison is shown in figure 4.

Comparing the unseen side targets reveals the differences between the approaches, especially in
conjunction with the estimated motions, which can be seen in the supplemental videos. GlobTrans
performs best in terms of the perceptual metrics, reaching a low FID of 30 due to having the same
large smooth structures as the reference. However, GlobTrans exhibits unnatural, excessive motion
in the side view. RapidGen is closer in appearance to the reference, but lacks a clearly defined
plume shape leading to a density error 3.8 times higher than ours. And even though the velocity of
RapidGen matches the reference better, the videos show that it consists mainly of a static upwards
motion. ScalarFlow exhibits smooth and natural motions but suffers from missing depth regular-
ization, resulting in an excessive amount of density. These results highlight the complexity of the
single-view motion estimation and the multitude of viable solutions when given only a single image
even for synthetic inputs, and illustrate the behavior of the different learned and optimization-based
methods. Next, we evaluate their performance with real-world inputs.

Table 3: Quantitative evaluation of different methods trained on the real world ScalarFlow dataset.
Lower values are better for all metrics under consideration.

Input Side Random Inference time
Algorithm RMSE RMSE LPIPS FID FID 120 steps
RapidGen (Qiu et al., 2021) .0227 .0405 .173 186 163 3m
Ours w/o ρ̃ .0589 .0670 .191 170 123 4m
Ours .0229 .0333 .116 134 102 4m
ScalarFlow (Eckert et al., 2019) .0254 .0488 .152 153 119 6.5h
GlobTrans (Franz et al., 2021) .0124 .0281 .085 102 77 37.5h
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RapidGen

ρ from 90°

Ours ScalarFlow GlobTrans

w/ shadows from 30°

Figure 6: Visualization of density distributions of different approaches using ScalarFlow data for
time-step 100. Our method shows similar structures as GlobTrans while being slightly less detailed.
The single-scale RapidGan network fails to replicate the intricate 3D structures of real world data.

4.3.2 REAL-WORLD CAPTURES

The real-world data of the ScalarFlow dataset introduces the challenges of fine structures, sensor
noise, and real-world backgrounds. It also does not provide measured 3D ground truth for compar-
isons, but the dataset still provides 5 calibrated views. With the center one being used as input, we
use the remaining 4 to quantitatively evaluate the estimations from unseen views. Again, the input
reconstruction in table 3 is good for all methods under consideration.

For the unseen side targets, our method with an FID of 134 now clearly outperforms RapidGen
with 186, as well as the expensive ScalarFlow optimization (153). Only the GlobTrans optimization
manages to do better in terms of this metric. We again evaluate the FID between random views of
the estimated sequences and random samples of the dataset which clearly detects the lack of features
in the RapidGen result. It also shows that structure-wise our method surpasses ScalarFlow, which
takes ca. 97 times longer to produce a single output. While the GlobTrans optimization fares even
better, it does so at the expense of a more than 560 times longer runtime. These measurements show
that our trained network successfully generalizes to new inputs, and yields motion estimates that are
on-par in terms of realism with classic, single-case optimization methods.

5 CONCLUSION

We presented Neural Global Transport (NGT), a new method to estimate a realistic density and
velocity sequence from new single view sequences with a single pass of neural network evaluations.
Our method and implementation currently have several limitations: e.g., it currently only supports
white smoke, while anisotropic scattering, self-illuminaton, or the use of other materials would
require an extension of the rendering model. Also, our transport model relies on advection without
obstructions. Here, our method could be extended to support obstacles, or multi-phase flows. For
even better long-term stability, the method could be extended to pass back information about future
time steps for improved guidance.

Nonetheless, we have demonstrated that our networks can be trained with only single view data and
short time horizons while still being stable for long sequences during inference. We solved the depth
ambiguity arising from the single-view setting by using an adversarial loss, and we stabilized the
velocity estimation by providing estimated prototype volumes both as input and as soft constraint.
The resulting global trajectories of NGT are qualitatively and quantitatively competitive with single-
scene optimization methods which require orders of magnitude longer runtimes.
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6 REPRODUCIBILITY STATEMENT

Our source code is publicly available at https://github.com/tum-pbs/
Neural-Global-Transport and includes the data and configurations necessary to re-
produce all results of the paper. Further details about network architectures, training procedures and
hyperparameters can also be found in the appendix.
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APPENDIX

A TECHNICAL DETAILS

A.1 NETWORKS

The full density generator Gρ is detailed in figure 7, the velocity generator part Gul consists only of
the 6 layers which are shared between all scales (see also figure 1). Like Gρ, it uses a kernel size
of 5 and relu activation, except for the input and output convolutions which have a kernel size of 1.
Any ResBlocks that change the number of filters from their input have a kernel size 1 convolution
on their skip path. If the number of filters stays the same this convolution is omitted. We use the
simple Layer Normalization of Xu et al. (2019) after every convolution except the last in a network.

Discriminator We reuse the discriminator of Franz et al. (2021) which is a simple stack of con-
volutional layers. However, we remove the crop and rotation in the data augmentation to allow the
discriminator to see the whole domain and consider the spatial orientation of observed features.

A.2 LOSSES

CFL magnitude loss For increased stability during advection we enforce the CFL condition on
the velocity by using a magnitude loss that only affects velocity components larger than 1:

LCFL =

3∑
i=1

max
(
u2
i − 1, 0

)
, (11)

where i are the x-, y-, and z-components of u.

Smoothness loss The first order smoothness loss is also defined per component:

Lsmooth =

3∑
i=1

[(
∂ui
∂x

)2

+

(
∂ui
∂y

)2

+

(
∂ui
∂z

)2
]
, (12)

where the spatial derivative is approximated with finite differencing in practice.

Figure 7: Our full density estimator network Gρ. Lower left: the velocity generator part Gul that
is reused for each scale. C is a convolution, RB a ResBlock, NN a nearest neighbour sampling. A
trapezoid shape indicate a stride of 2. Strided convolutions use a filter size of 4, the rest 5, all use
ReLU activation. The number of filters and spatial resolutions are given in the image.
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A.3 TRAINING

Our method is implemented in TensorFlow version 1.12 under python version 3.6 and trained on
a Nvidia GeForce GTX 1080 Ti 11GB. For training we use the Adam optimizer. For leaning rate
decay we use the following formula:

learning rate

1 + (iteration− offset)decay
(13)

Data Our synthetic dataset consists of 30 randomized simulations of buoyant smoke plumes, sim-
ulated with Mantaflow at a resolution of 128x192x128 (2x higher than our training resolution) for
150 time steps. We omit the first 45 frames as startup and train with the remaining 105 frames. The
volumes are rendered with the same renderer we use during training to obtain the input images.

For the real world data we use the raw captures of first 30 scenes of the SalarFlow dataset as input
images and omit the first 20 frames to ensure that there is enough density visible, leaving 130
frames per scene. We downsample the images by a factor of 10 to 192x108 to approximately match
the projected grid resolution.

Each Network and method has been trained specifically for the corresponding dataset.

Density training Gρ is trained with Lρ = LÎ + 2e-4LD + 1e-3Lz and a learning rate of 2e-4
with a decay of 2e-4, the decay is offset by -5000 iterations. We start at a grid resolution of 8x12x8
with 2 UNet levels. The resolution grows after 8k, 16k and 24k iterations by a factor of 2, adding a
level of the UNet every time, thus reaching a maximum grid resolution of 64x96x64 with 5 levels.
New levels are faded in over 3k iterations, starting 2k iterations after growth, by linearly interpolating
between the up-sampled previous level and the current level. After fade-in only the output of the
highest active level remains. The image resolution grows in conjunction with the density.

Velocity training For Gu we use Lρ = LÎ + 1e-3Lρ̃ + 2e-6LD + 1e-3Lz + 0.1LCFL +
1e-4Lsmooth with a learning rate of 4e-4 with the same decay of 2e-4, offset by -5000 iterations.
The velocity training also starts at a grid resolution of 8x12x8 with 2 levels of Gul and with only 1
advection step (i.e. 2 frames). The density estimation and advection always happen at the maximum
resolution of 64x96x64 and the velocity is up-scaled accordingly before it has reached this resolu-
tion. Before increasing the resolution, we extend the sequence, first to 3 frames after 1500 iterations
and then to the final 5 frames after 3k iterations. Then we grow the resolution of the velocity esti-
mation after 4k, 8k and 12k iterations, each time adding a new level of Gul. The residual of a newly
added velocity level is linearly faded in over 1500 iterations, starting 500 iterations after growth. A
full training run of our model takes 6 days on average using a single GTX 1080 Ti GPU.

A.4 RENDERING

We use the differentiable volumetric ray-marcher of Franz et al. (2021) for our method which dis-
cretizes the rendering equation

R(ρ, L, c) =

∫ f

n

L(x)e−
∫ x
n
ρ(a)dadx, (14)

where L gives the lighting at point x and c are camera parameters resulting in pixel rays from n to f ,
by stepping along the ray to solve the integrals. The single-scattered lighting is realized by solving
the rendering equation in the same way and storing intermediate step values to create the lighting
volume L. A background image ÎB can be added by attenuating it with the total density along the
ray, thus the rendering becomes

R(ρ, L, c) =

∫ f

n

L(x)e−
∫ x
n
ρ(a)dadx+ e−

∫ f
n
ρ(a)daÎB . (15)

We modify the renderer to only render inside of the cell center of the outer cell-layer instead of their
outer border to avoid border artifacts at the inflow, which are likely caused by the interpolation to 0
outside the domain.
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A.5 PROJECTION INTO THE VOLUME

The operation R−1 transfers an image or 2D tensor into the volume by evenly distributing it along
the pixel rays into the volume from a given view. This is achieved by inverting the ray-marching
procedure. While marching along the ray the current pixel value is distributed to the 8 voxels around
the current position, weighted by the distance to the voxel. The weights are the same one would use
for linear interpolation at that point. Afterwards, the accumulated voxel-values are normalized with
the number of contributions per voxel to obtain a smooth result. This procedure is also used for the
gradient backwards pass ofR.

A.6 ADVECTION

The MacCormack advection (Selle et al., 2008) is a second order transport scheme using Semi-
Langrangian advection as its base, which itself is implemented as a backwards-lookup using the
velocity vectors and interpolating the transported field at the lookup location. With ASL as the
Semi-Langrangian base, MacCormac is defined as

ρ̂t+1 := ASL(ρt,ut)

ρ̂t := ASL(ρ̂t+1,−ut)
ρt+1 := ρ̂t+1 + 0.5(ρt − ρ̂t).

(16)

To avoid extreme values the results are limited to be within the range of the interpolants encountered
in the first Semi-Langrangian advection.

Boundary and inflow handling All boundaries are open, meaning that advections that transport
density from outside the domain use values from the nearest boundary layer. Inflow of densities
is thereby automatically handled by the open boundaries which works well in our application but
is theoretically limited as an initial density at the boundary layer is needed to have any inflow and
the inflow can never exceed the already existing density values due to the linear interpolation in the
advection.

Vector potentials and curl Generating vector potentials and defining the velocity as their curl,
as we do in our velocity estimation, can lead to discontinuous velocity fields if linear interpolation
is used to interpolate vector potential fields between resolutions (Chang et al., 2021). Since the
curl is based on spatial derivatives, and the derivatives of linear interpolation are not continuous,
the resulting velocity can have discontinuities which can lead to grid aligned artifacts visible in the
results. To circumvent this issue we use the higher order quadratic B-splices as interpolation kernels
to transfer vector potentials from coarse to finer resolutions of our multi-scale network. This leads
to a noticeably smoother velocity, as can be seen from the advected densities in figure 8.

B ADDTIONAL RESULTS

B.1 ABLATIONS

We run additional ablations for the losses Lsmooth and LCFL when training Gu. The corresponding
metrics are in table 4.

B.2 DENSITY PROTOTYPES

We visualize some of the density prototypes ρ̃ for the ScalarFlow dataset in figure 9. These are
intended as a rough volumetric guidance via Lρ̃ and not seen as the real solution.

B.3 SCALARFLOW DATA

Additional results of our method evaluated on ScalarFlow data can be found in figures 10, 11 and
12 as well as in the supplemental videos.
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Figure 8: Left: the grid-aligned artifacts are caused by discontinuous velocities. Right: higher order
interpolation of the potentials forces the velocities to be smoother, resulting in smoother densities
after advection.

Table 4: Quantitative ablation of different regularization terms when training Gu on the real world
ScalarFlow dataset. The training diverges without any regularization (first row), leading to empty
volumes. Without magnitude regularization (LCFL, second row) the training itself is stable, but the
evaluation produces velocities that quickly remove all density from the volume after a few time
steps, again leaving empty volumes. Lower values are better for all metrics under consideration.

Input Side Random
Algorithm Lsmooth LCFL Lρ̃ RMSE RMSE LPIPS FID FID
Ours - - - - -
Ours X - - - - -
Ours X .0227 .0341 .117 136 84
Ours X X .0589 .0670 .191 170 123
Ours X X X .0229 .0333 .116 134 102
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Figure 9: The density prototypes ρ̃ of ScalarFlow scene 80 used in the volumetric guidance Lρ̃
when training Gu. These are less detailed then the densities resulting from advection and show some
artifacts around the border of the plume.
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Figure 10: Our final model evaluated on ScalarFlow scene 80.
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Figure 11: Our final model evaluated on ScalarFlow scene 81.
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Figure 12: Our final model evaluated on ScalarFlow scene 82.
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