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Abstract

High-resolution, high-quality images of human faces are
desired as training data and output for many modern appli-
cations, such as avatar generation, face super-resolution,
and face swapping. The terms high-resolution and high-
quality are often used interchangeably; however, the two
concepts are not equivalent, and high-resolution does not
always imply high-quality. To address this, we motivate and
precisely define the concept of effective resolution in this
paper. We thereby draw connections to signal and infor-
mation theory and show why baselines based on frequency
analysis or compression fail. Instead, we propose a novel
self-supervised learning scheme to train a neural network
for effective resolution estimation without human-labeled
data. It leverages adversarial augmentations to bridge the
domain gap between synthetic and real, authentic degrada-
tions – thus allowing us to train on domains, such as hu-
man faces, for which no or only few human labels exist.
Finally, we demonstrate that our method outperforms state-
of-the-art image quality assessment methods in estimating
the sharpness of real and generated human faces, despite
using only unlabeled data during training.

1. Introduction
Generative models that produce high-quality face im-

ages, such as human avatar generation, face super-
resolution, and face swapping, require high-resolution,
high-quality training data sets. Low-resolution images neg-
atively affect the resulting models’ output. It is therefore
crucial to identify and remove these images prior to train-
ing. This seemingly simple task is challenging, however,
since high-resolution does not always imply high-quality,
so users must often resort to visual inspection.

Diagnosing the quality of a model’s output can also be
a challenging and subjective task. Consider, for example, a
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generative model in the form of a neural network that has
been progressively trained (e.g. [15, 30]). It has been ob-
served that such models can devote more effort to captur-
ing details at lower resolutions, for example resulting in a
1024 × 1024 image with only minor detail improvements
over a 512 × 512 image [17]. This scenario motivates our
definition of effective resolution, given more precisely in
Section 3, as the lowest-resolution image that is informa-
tionally equivalent to a given test image. Figure 1 visualizes
different effective resolutions of a face image1 and shows
the scores assigned by our proposed model.

While effective resolution is an aspect of image qual-
ity, it refers to something more specific than what is typ-
ically covered by general image quality assessment meth-
ods [27, 28, 47, 36, 43, 48, 6, 18, 35], which predict scores
corresponding to images’ perceptual quality. Effective res-
olution can be affected by the process of capturing data (e.g.
camera out-of-focus or downscaling) or by the subject of an
image itself (e.g. content with low detail, such as a smooth,
uniformly colored surface). We argue that estimating effec-
tive resolution is best handled by domain-aware methods,
one of which we describe in this work.

We propose a self-supervised training scheme based on
downscaling and upscaling images using random interpola-
tion methods and having a network predict the (inverse of
the) downscaling factor. We further propose using adver-
sarial augmentations during training to help bridge the do-
main gap between training with synthetically degraded im-
ages and evaluating on real, authentically degraded images
and to generalize to unseen faces. In contrast to most image
quality assessment methods, our method does not require
any human quality labels during training. To our knowl-
edge, we are the first to propose adversarial augmentations
in an image quality assessment context, and we show their
usefulness in significantly boosting the performance as well
as producing a more stable and meaningful gradient.

While we focus on images of human faces, the method

1Note: All images in this paper are best viewed digitally and uncom-
pressed as their effective resolutions are affected negatively otherwise.
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Figure 1: Visualization of different effective resolutions. We downscale an input image of absolute resolution r = 512× 512
to different resolutions rdown and upscale it back to r using bilinear interpolation. For each image, the absolute resolution
r = 512 × 512, the effective resolution reff = rdown, and r̂eff denotes our model’s predicted effective resolution. Note: We
first downscaled a high-quality image to resolution 512× 512, so that we can assume that r = reff = 512.

we describe is general and can easily be applied to other
image domains. Among the applications of our approach is
the automatic selection of high-quality training data; qual-
ity assessment of model output; a source of features for
downstream tasks; an informative training metric, both as
a progress monitor and as a differentiable loss; and even
advice regarding architectural choices in cases in which an
image distribution is of low average effective resolution rel-
ative to the initial modeling assumptions.

Our main contributions are:
1. Proposing the term effective resolution as a meaningful

measure of image quality and defining it mathemati-
cally.

2. Developing a novel self-supervised training scheme
using adversarial augmentations to train an effective
resolution estimation network.

3. Demonstrating state-of-the-art performance in assess-
ing the quality of human faces despite having no hu-
man labels during training.

2. Related work
The term effective resolution was mentioned in Style-

GAN2 [17] in an intuitive way, but we are the first to define
this term precisely in the context of computer vision to the
best of our knowledge. Effective resolution is also used in
the contexts of spatial resolution in X-ray microtomography
[29], super-resolution microscopy [5], and digital photogra-
phy (to define the resolution required to print an image on a
specific physical paper size).

2.1. General image quality assessment

Effective resolution is related to the field of no-reference
image quality assessment (IQA), which aims to predict the
general quality of an image. Traditional IQA methods, like

BRISQUE [27], NIQE [28], or IL-NIQE [47] using natural
scene statistics or other hand-crafted features have been su-
perseded by deep learning methods with the seminal work
by Kang et al. [14] that uses a convolutional neural net-
work to extract features. Bosse et al. [1] further showed
that deep semantic features can boost the performance. To
help train deeper networks and improve the performance
on real degradations, large-scale labeled data sets such as
CID2013 [38], LIVE Wild [7], PaQ-2-PiQ [43], KonIQ-10k
[12], SPAQ [6], and PIPAL [13] were released. This led to
the adoption of more sophisticated architectures such as the
transformer [37] as seen in [44, 8, 18, 42, 41].

2.2. Blur-specific image quality assessment

Because our goal is to retain images with certain distor-
tions, like difficult lighting or noise, general IQA methods
are not suitable in this application. Classical blur detec-
tion methods often use spatial features such as edges [25,
31, 19], transform-based features [40, 10] or a combina-
tion thereof [39, 22, 21]. These methods often fail in com-
plex, real world cases. Therefore, new algorithms are based
on deep learning. Li et al. [20] discuss the dependence of
sharpness on the semantic context and propose using deep
semantic features. Recently, two large-scale data sets, i.e.
SPAQ [6] and KonIQ++ [35], that include a label for spe-
cific distortions such as sharpness/blurriness along with the
overall quality were introduced. The authors further pro-
pose methods that include this information during training
to jointly predict specific distortions and the overall quality.

Some methods such as CONTRIQUE [23] and DB-
CNN [48] incorporate synthetic data in their training to
improve the performance. However, they still require la-
beled real images in some stage during training. Since
labeled data sets are expensive to obtain and do not ex-
ist for certain domains, e.g. face images, we propose a



fully self-supervised method. Rather than relying on labels,
we leverage synthetic distortions combined with adversar-
ial noise, which is mostly used in the context of adversarial
attacks [24], to achieve state-of-the-art results.

3. Effective resolution
Since the absolute resolution of an image, i.e. the num-

ber of pixels, does not always correlate with its perceived
sharpness, we propose the term effective resolution.

Definition. The effective resolution reff of an image x is

reff := min
u∈U,d∈D

{ rdown | urdown→r(dr→rdown(x)) = x } (1)

where D is a class of nonparametric downscaling methods
and U is a class of nonparametric upscaling methods.

In simple words, the effective resolution is the minimum
resolution to which an image can be downscaled, such that
upon upscaling it back to the original (absolute) resolution,
the upscaled image is identical to the original image. In-
tuitively, at this minimum size, i.e. at an image’s effective
resolution, there exist at least some pixels that are used
effectively to convey information, and the image appears
sharp. In practice, the definition of effective resolution can
be loosened to allow small, perceptually negligible differ-
ences between the original and down-upscaled image. Un-
less otherwise specified, we consider square images in order
to simplify the notation of effective resolution into a single
number, i.e. the side length.

Figure 2 visualizes our definition for an 8 × 8 image a
of a 2 × 2 chessboard pattern. Since a 2 × 2 chessboard
pattern can be fully specified with a 2×2 image, its effective
resolution is 2.

r = 8 rdown = reff = 2 rup = 8

x xdown xup

dr→rdown
urdown→rup

Figure 2: Visualization of the definition of effective resolu-
tion. An 8× 8 image x of a 2× 2 chessboard pattern has an
effective resolution reff = 2 since it can be downscaled to
a 2 × 2 image xdown and successively upscaled back to the
same 8 × 8 resolution using nearest neighbor interpolation
such that xup = x. The upscaling operation only adds re-
dundant information.

For images with the same content and absolute reso-
lution, a lower effective resolution implies a lower image

sharpness or, inversely, a higher blurriness. Note that the
terms sharpness and blurriness are not exact inverses. For
example, an in-focus image of a smooth, uniformly colored
surface is neither sharp (because there are no details) nor
blurry (because the camera is not out-of-focus, and there is
no relative motion between camera and object). Neverthe-
less, in this paper, we assume that sharpness and blurriness
are opposites for the domain of face images for the sake of
simplicity.

Effective resolution is closely related to and can be in-
vestigated using ideas from signal and information theory
as described in Section 5. To this end, we construct two
baselines: one that considers the maximum frequency of an
image and another one centered on the idea that a blurry
image can be compressed more. We not only express the-
oretical shortcomings of the considered baselines but also
demonstrate their poor performance compared to our pro-
posed method.

4. Method
We propose to use a neural network to estimate the ef-

fective resolution of an image since neural networks are
content-aware and learn all relevant thresholds automati-
cally rather than having to set them manually for each image
domain. Additionally, due to our training scheme with ad-
versarial augmentations, our model is robust to noise and
thus generalizes to unseen degradations.

Our method is based on two key concepts: (1) a self-
supervised training scheme that randomly down- and up-
scales images to obtain training samples and (2) a strategy
of using adversarial augmentations during training to signif-
icantly boost the performance. Figure 3 shows an overview
of our method architecture.

4.1. Self-Supervised training scheme

Most image quality assessment methods, even those ob-
taining image quality representations in a self-supervised
manner [23, 48], rely on human labels as ground truth re-
gression targets at some point during training. In contrast,
our method works without any human labels by translat-
ing our definition of effective resolution from Section 3 into
a training target. Specifically, we can generate a training
sample by first downscaling an image with absolute reso-
lution r using a random downscaling factor and interpola-
tion method to an absolute resolution rdown and then up-
scaling the image back to the original absolute resolution
rup = r using another random interpolation method. If the
downscaling factor is sufficiently large, we can assume that
rdown = reff. As described in Section 3, upscaling an im-
age with a nonparametric upscaling method only adds re-
dundancy, so the effective resolution remains constant when
upscaling. The target effective resolution ratio y of the up-
scaled image is thus the inverse of the downscaling factor,
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(a) Training: First, an original image x with a resolution of r is downscaled to a random resolution of rdown before being upscaled to a
resolution of rup where rup = r. Then, the background is masked out, and patches are extracted. These patches are passed through the
model to produce the predicted effective resolution ratio ŷi for each patch pi. The loss between the predicted patch-wise scores ŷi and the
target effective resolution ratio rdown
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acts as training signal. Furthermore, in the training steps with adversarial augmentations, the gradient

of the loss L with respect to the input patches pi (visualized in orange) is used to produce patch-wise adversarial noise padv,i which is then
added to the input patches pi before being input into the model.
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(b) Inference: First, the background of an input image with a resolution r is masked out. Afterwards, the image is split into patches pi, and
each patch is passed through the model to obtain the patch-wise scores ŷi. These scores are then aggregated to the final score ŷ. Finally,
the aggregated predicted effective resolution ratio ŷ is multiplied with the input resolution r to obtain the predicted effective resolution r̂eff.

Figure 3: Method architecture.
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, and is regressed by a neural network.
Resizing an image changes the pixel information of an

image and might thus destroy crucial quality information.
Therefore, we propose to use patches similar to [20, 18]
to handle images of varying and large absolute resolutions
effectively. We assume that the downscaled training im-
ages are uniformly sharp spatially, so each patch inherits
the same regression target, similar to [46]. During infer-
ence, the patch-wise scores ŷi of an image are aggregated
into one score ŷ which is multiplied by the input resolution
r to obtain the final predicted effective resolution r̂eff.

The background is masked out with an off-the-shelf
method [45, 49] for two reasons. First, the background
of face portraits is often blurry. This violates the assump-
tion that downscaled training images are perfectly and uni-
formly sharp and would lead to faulty training targets for
background patches for small downscaling factors. Second,
we are only interested in the quality of the face, so the net-
work should ignore the background during inference (which
contains complex degradations for generated images).

4.2. Adversarial augmentations

During training, we sample the downscaling factor as
well as the interpolation methods randomly for each train-
ing sample, so that the model sees a wide range of degra-
dations. To further improve the robustness of the model to
small pixel changes as well as to bridge the domain gap
between training on artificial degradations and testing on
degradations encountered in real or generated images, we
propose to use adversarial augmentations during training.
Our intuition is that the adversarial augmentations inter- and
extrapolate between the different interpolation methods and
thus ensure that the model does not overfit to specific in-
terpolation methods. By perturbing the input image values
slightly during training, the model sees many images that
are all mapped to the same score and thus focuses less on
tiny pixel value differences but rather on the overall qual-
ity. As the adversarial noise can actually influence the per-
ceived sharpness of an image (see supplementary material),
we constrain the strength of the adversarial noise during



training to ensure that it is mostly imperceptible to the hu-
man eye. This allows us to assume that a sample’s target
effective resolution ratio y remains constant.

Note that, while there are some similarities, our training
scheme using adversarial augmentations is different from
the adversarial training known from generative adversarial
networks (GANs) [9]. Specifically, we only have a single
neural network and use its own gradient to produce adver-
sarial noise.

5. Experiments and results
As labeling the effective resolution is very difficult and

no such labeled data set exists to our knowledge, we eval-
uate our method on the task of blurriness/sharpness estima-
tion of human face images. We thereby compare to gen-
eral and blur-specific image quality assessment methods
and demonstrate state-of-the-art performance despite hav-
ing no human labels during training.

5.1. Experimental details

5.1.1 Implementation details

Our network consists of a ResNet50 [11] as a backbone,
followed by an average pooling and a fully connected layer.
It is trained using mean absolute percentage error (MAPE)
as loss function. To generate adversarial augmentations, we
use projected gradient descent (PGD) attacks [24] with 10
PGD steps of size 30 in the L2 norm. During inference, we
aggregate the patch scores using the median.

Refer to the supplementary material for a complete ex-
planation of the implementation details.

5.1.2 Training data

For training, we use a proprietary data set of 10777 high-
quality human faces from 17 subjects. The images are
cropped to the face area, leading to various resolutions (all
over 1000 × 1000). Samples of the training data can be
found in the supplementary material.

5.1.3 Evaluation data

For evaluation, we use real and generated images of four
subjects that are not seen during training. The real images
are similar to those used during training. They cover vari-
ous types of settings (inside vs. outside, static vs. handheld)
and degradations (out-of-focus blur, motion blur). The gen-
erated images were extracted at different times during the
training of the face swapping method from [30] (trained
with images from the complete data set for the same sub-
jects) and all have a resolution of 512 × 512. We selected
two folders with 10 images each per subject and category,
resulting in a total number of 160 images. Samples of the
evaluation data can be found in the supplementary material.

To obtain ground truth rankings according to human per-
ception, we conducted an experiment with 15 test subjects.
Since the quality of an image is difficult to label directly, we
asked the subjects to perform pairwise comparisons, similar
to [33, 32, 13]. For this, we asked the subjects to choose the
sharper image while ignoring the background and degrada-
tions such as over-exposure and color shifts. For each batch
of 10 images of the same person, we created 45 pairwise
comparisons (which equals the number of comparisons that
would be required to do one full pairwise comparison). We
use the ASAP method [26] rather than doing the full pair-
wise comparisons because it provides more accurate rank-
ing scores with the same number of comparisons. In total,
test subjects performed 10800 pairwise comparisons. Af-
terwards, we compared the ratings of each subject to the
average of the ratings from all of the other subjects to esti-
mate the human performance. The bottom of Table 1 lists
the mean and standard deviation of the subjects’ ratings.

5.2. Baselines

5.2.1 Frequency baseline

As the resolution of an image determines its maximum rep-
resentable frequencies, we can construct a “frequency base-
line” which predicts the effective resolution based on signal
theory using the Fourier transform [2]. According to the
Nyquist-Shannon sampling theorem [34], downscaling an
image with an ideal sinc filter removes frequencies below
fmax = r

2 where r is the spatial resolution of the image.
Upscaling an image with an ideal sinc filter does not add
higher frequencies. Therefore, if we assume that a given
blurry image x of resolution r can be obtained by upscaling
an image of a smaller resolution, we can calculate the effec-
tive resolution as follows: reff = 2 · ˆfmax where ˆfmax is the
maximum frequency found in image x. We therefore extract
the frequency at which the cumulative energy (i.e. squared
sum) of all lower frequencies sums up to (100− ϵc)% of all
the energy of all frequencies below the Nyquist frequency
where ϵc is a hand-picked threshold and ϵc ⪆ 0. Unless
otherwise stated, we use ϵc = 0.005 for the experiments as
it results in the best validation performance.

5.2.2 Compression baseline

From an information-theoretic perspective, one can inter-
pret the effective resolution in terms of the compressibil-
ity of an image. Blurrier images can be compressed more
than sharp images, so effective resolution correlates pos-
itively with the compressed file size. We can thus con-
struct a “compression baseline” using JPEG compression,
where the score is the compressed file size of an image us-
ing OpenCV’s [3] default JPEG quality setting of 95.



Method Type Method
Generated Real All

SRCC↑ PRA↑ SRCC↑ PRA↑ SRCC↑ PRA↑

Baselines
Frequency baseline 0.3283 0.6132 0.6726 0.7450 0.5005 0.6791
Compression baseline 0.6864 0.7614 0.7333 0.7876 0.7098 0.7745

Classic
general

BRISQUE [27] 0.8424 0.8466 0.5985 0.7232 0.7205 0.7849
NIQE [28] 0.8773 0.8751 0.3348 0.6283 0.6061 0.7517
IL-NIQE [47] 0.7061 0.7755 0.3409 0.6212 0.5235 0.6983

Deep learning
general

NIMA [36] 0.7636 0.8097 0.5000 0.6811 0.6318 0.7454
PaQ-2-PiQ [43] 0.6606 0.7535 0.6848 0.7642 0.6727 0.7588
DB-CNN [48] 0.6939 0.7810 0.6500 0.7465 0.6720 0.7637
MUSIQ (PaQ-2-PiQ) [18, 43] 0.7758 0.8155 0.9227 0.9124 0.8492 0.8640
MUSIQ (SPAQ) [18, 6] 0.7061 0.7845 0.6333 0.7464 0.6697 0.7654
MUSIQ (KonIQ-10k) [18, 12] 0.8545 0.8527 0.8788 0.8825 0.8667 0.8676

Classic
blur-specific

CPBD [31] 0.6909 0.7780 0.5424 0.7064 0.6167 0.7422
∆ DOM [19] 0.9500 0.9321 0.8288 0.8422 0.8894 0.8871

Deep learning
blur-specific

SFA [20] 0.5076 0.6921 0.8121 0.8364 0.6598 0.7643
MT-A [6] 0.5470 0.6986 0.8106 0.8276 0.6788 0.7631
KonIQ++ [35] 0.7742 0.8131 0.9364 0.9303 0.8553 0.8717

Ours
Ours (patch size 256) 0.9258 0.9120 0.9045 0.8847 0.9152 0.8984
Ours (patch size 128) 0.9318 0.9263 0.9076 0.8952 0.9197 0.9107

Ground truth
Mean 0.9407 0.9250 0.9466 0.9317 0.9436 0.9284
Standard deviation 0.0256 0.0213 0.0186 0.0178 0.0172 0.0151

Table 1: Evaluation results (masked). SRCC denotes the Spearman rank correlation coefficient, and PRA denotes the pairwise
ranking accuracy. The best score per column is marked in bold, the second- and third-best are underlined.

5.3. Comparison with state-of-the-art methods

We compare our proposed method to general as
well as blur-specific state-of-the-art image quality assess-
ment methods. For BRISQUE [27], NIQE [28], IL-
NIQE [47], NIMA [36], PaQ-2-PiQ [43], DB-CNN [48],
and MUSIQ [18], we use the implementations provided in
[4]. For all other methods, i.e. for MT-A [6], KonIQ++ [35],
CPBD [31], ∆ DOM [19], and SFA [20], we use the official
implementations and parameters. To ensure the fairness of
the evaluation, the background is masked out for all meth-
ods since it generally improves the performance. Refer to
the supplementary material for the unmasked results.

Table 1 lists the results of all of the methods on our eval-
uation data for generated images, real images, and overall.
We evaluate the methods on the Spearman rank correla-
tion coefficient (SRCC) and the pairwise ranking accuracy
(PRA). The SRCC measures the strength of the monotonic
association between the method’s scores and the ground
truth and is in the range [−1, 1] where 1 is a perfect positive
correlation. The PRA is the ratio of pairwise comparisons
that the method ranks the same as the test subjects. The
score range is [0, 1], where a PRA of 1 is the best, and a
PRA close to 0.5 indicates that a method is nearly random.

Both metrics are independent of the score range and lin-
earity, so no score modification or retraining is necessary.
When calculating the above metrics for methods that out-
put the blurriness, we negate the method’s output, so that a
higher score always refers to better quality.

The frequency baseline does not work well in practice
because common interpolation filters approximate the ideal
sinc filter very poorly. As an extreme example, when up-
scaling using nearest neighbor interpolation, pixels are sim-
ply repeated, leading to very high frequencies at the original
pixel boundaries. Figure 4 shows that the predicted effec-
tive resolution of the frequency baseline (using ϵc = 0.001)
is too high and does not decrease monotonically with larger
downscaling factors.

The compression baseline performs better than the fre-
quency baseline but has the major shortcoming that the
compressibility is heavily influenced by the content. There-
fore, an image of a man with a beard will likely have a larger
file size than an image of a shaved man of similar quality.

Our proposed network outperforms all methods overall
by more than 2% and lags less than two standard devia-
tions behind the estimated human performance. It performs
especially well on generated images, likely because the ad-
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Figure 4: Monotonicity plot for the frequency baseline. The
plot shows the predicted effective resolution when down-
scaling an image using area interpolation and upscaling us-
ing nearest neighbor interpolation for different downscaling
factors. The frequency baseline (orange, using ϵc = 0.001)
results in values that are too high and not monotonous, es-
pecially as the downscaling factor increases, since nearest
neighbor upscaling produces many high frequencies at the
original pixel boundaries. In comparison, our proposed net-
work (blue) follows the expected values (gray) much more
closely. Note: We first downscaled a high-quality image to
resolution 512×512 (masked image from Figure 3), so that
we can assume that r = reff = 512.

versarial augmentations lead to a model that is more robust
to unseen degradations. It is noteworthy that ∆ DOM [19]
only outperforms our method when we mask out the back-
ground, and its performance degrades tremendously oth-
erwise whereas our method’s performance only degrades
slightly. Furthermore, the deep learning methods that out-
perform our method on real images all require labeled data
while our method is trained in a completely self-supervised
manner and uses a smaller backbone.

5.4. Ablation study

Table 2 shows an ablation of the most important train-
ing parameters. Refer to the supplementary material for the
complete table. Note that all ablations are performed with a
patch size of 256.

5.4.1 Training data set

As our proposed method does not require any labels, we are
flexible in choosing the training data set. It appears benefi-
cial to train on a data set that contains many subjects as the
model trained on a small subset of the data that contains all
subjects performs better than the one trained with only one
person but the same number of training images. Our pro-
posed method is fairly robust to low-quality images in the
training data set as seen in the relatively small degradation

Category Setting
All

SRCC↑ PRA↑

Training
data set

One person 0.8280 0.8446
Small 0.8803 0.8783
Adding blurry images 0.9023 0.8896
Subset of FFHQ [16] 0.9053 0.8924

Adversarial
method

None 0.2083 0.5765
Step size L2 = 3 (*/10) 0.8879 0.8828
Step size L2 = 300 (* · 10) 0.8098 0.8309

Unmasked
Unmasked training 0.8636 0.8740
Unmasked inference 0.9129 0.8954
Unmasked training + inf. 0.8977 0.8968

Pre-
processing

Only bicubic interp. 0.9053 0.8956
Only nearest neighb. interp. 0.7461 0.4512

Ours Ours (patch size 256) 0.9152 0.8984

Table 2: Ablation study results (reduced). SRCC denotes
the Spearman rank correlation coefficient, and PRA denotes
the pairwise ranking accuracy. The best score per column is
marked in bold, the second- and third-best are underlined.
* indicates the value of the parameter in “Ours (patch size
256)”.

in performance when adding around 10% blurry images to
the data set and when training on a similarly-sized subset
of FFHQ [16] (first 10000 images) that contains many de-
graded images.

5.4.2 Adversarial method

Without adversarial augmentations, the performance be-
comes nearly random as the model can overfit to the specific
interpolation methods encountered in training. This effect
is shown in Figure 5, where even just rounding the pixel
values (in the range [0, 255]) to the nearest integer leads the
model trained without adversarial augmentations to perform
very unexpectedly and actually predict higher scores as an
image is downscaled more. The fact that the unrounded ver-
sion looks reasonable also demonstrates that a monotonicity
experiment, where a single image is degraded with different
strengths, can only really indicate that a method will per-
form poorly on real images but not that it will perform well.
Simply changing the training procedure to also round the
pixel values leads to better results for this experiment but
does not improve the performance on real images signifi-
cantly. We hypothesize that adversarial augmentations have
such a big impact in our training scheme since the network
is tasked to look at the small pixel differences that affect
the sharpness of an image rather than the overall content of
the image, so tiny changes in the pixel values influence the



score significantly.
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Figure 5: Monotonicity plot for the model without adversar-
ial augmentations. The plot shows the predicted effective
resolution when down- and upscaling an image using bi-
linear interpolation for different downscaling factors. The
model trained without adversarial augmentations follows
the expected values (gray) closely only if the image values
in the range [0, 255] are not rounded to the nearest integer
(orange). Otherwise, the predicted effective resolution actu-
ally increases beyond a certain downscaling factor. In com-
parison, our proposed network (blue) performs well with the
rounding since it is much more robust to small pixel value
differences. Note: We first downscaled a high-quality im-
age to resolution 512× 512 (masked image from Figure 3),
so that we can assume that r = reff = 512.

Whereas the adversarial noise generated for a non-
adversarially trained model appears arbitrary and relatively
uniformly distributed, the adversarial noise generated for an
adversarially trained model is very meaningful and shows
the face structures that influence the sharpness the most, as
seen in Figure 6 and the supplementary material. There is a
trade-off for the strength of the adversarial augmentations.
If the adversarial augmentations are too weak, the model
is not robust enough. On the other hand, if the adversarial
augmentations are too strong and actually change the per-
ceived sharpness of an image, the network does not receive
a clear, consistent training signal since the training assumes
the label of an image does not change due to the adversarial
noise. This can even lead to training collapse.

5.4.3 Unmasked

Not masking out the background during training degrades
the performance more than not masking it out during in-
ference. Interestingly, if the background is not masked out
during inference, the model is better if it was trained with
masks rather than without despite having a small domain
gap between training and evaluation images. We hypoth-
esize that masking during training helps since it ensures

Input Input w/ noise Adv. noise

(a)

(b)

Figure 6: Visualization of the adversarial noise during train-
ing. The adversarial noise of our proposed method (a) is
meaningful and captures image structures that heavily in-
fluence the sharpness whereas the adversarial noise of the
model trained without adversarial augmentations (b) ap-
pears random.

that the assumption of having sharp training images after
the downscaling operation is met.

5.4.4 Preprocessing

When using only bicubic interpolation during training, the
performance only degrades slightly, showcasing the useful-
ness of the adversarial noise in simulating real degradations.
However, when using only nearest neighbor interpolation,
the performance degrades significantly. We hypothesize
that the domain gap between the block artifacts from near-
est neighbor upscaling and real degradations is too large to
be covered using adversarial augmentations alone.

6. Conclusion
In this paper, we motivate and define the term effec-

tive resolution that correlates with image sharpness and in-
tuitively defines the minimal resolution to which we can
downscale an image without loss of information. We pro-
pose a self-supervised training scheme to predict the effec-
tive resolution of an image based on downscaling and up-
scaling images. Thereby, we leverage adversarial augmen-
tations to boost the performance tremendously. This moti-
vates further research in using adversarial noise in the field
of image quality assessment to improve generalization as
well as in using the resulting meaningful gradient for down-
stream tasks. Our method achieves state-of-the-art perfor-
mance on a data set with realistic and generated face images
despite only using unlabeled data during training, demon-
strating the effectiveness of the proposed approach. While
we focus on face images, our method is generic in nature
and transfers to other domains.
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