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Figure 1: We extend 3D morphable models to include the time dimension, with a novel transformer network that can synthesize and analyze

3D geometry sequences of arbitrary length. Our method disentangles facial identity from motion, allowing one to generate arbitrary anima-

tions for different subject identities. Each row above corresponds to a unique identity and the columns correspond to frames from a randomly

sampled animation from the learned motion manifold of our performance transformer.

Abstract

We propose a 3D+time framework for modeling dynamic sequences of 3D facial shapes, representing realistic non-rigid motion

during a performance. Our work extends neural 3D morphable models by learning a motion manifold using a transformer

architecture. More specifically, we derive a novel transformer-based autoencoder that can model and synthesize 3D geome-

try sequences of arbitrary length. This transformer naturally determines frame-to-frame correlations required to represent the

motion manifold, via the internal self-attention mechanism. Furthermore, our method disentangles the constant facial identity

from the time-varying facial expressions in a performance, using two separate codes to represent neutral identity and the per-

formance itself within separate latent subspaces. Thus, the model represents identity-agnostic performances that can be paired

with an arbitrary new identity code and fed through our new identity-modulated performance decoder; the result is a sequence

of 3D meshes for the performance with the desired identity and temporal length. We demonstrate how our disentangled motion

model has natural applications in performance synthesis, performance retargeting, key-frame interpolation and completion of

missing data, performance denoising and retiming, and other potential applications that include full 3D body modeling.

CCS Concepts

• Computing methodologies → Motion processing; Shape modeling; Mesh geometry models;
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1. Introduction

In the past several years, we have witnessed a steady increase of
data-driven algorithms for 3D human motion modeling. Exam-
ples include deep neural networks for solving problems like fa-
cial performance capture from monocular video [FFBB21], dy-
namic hand tracking [BdBT19], and full body motion reconstruc-
tion [ZYW∗19]. The common thread among all data-driven meth-
ods is the need for high-quality training data. When it comes
to modeling the non-rigid motion of 3D shapes in facial perfor-
mances, training data can be difficult to acquire, often involving
synchronized multi-camera setups, scheduling of human perform-
ers, and then time-consuming reconstruction techniques and qual-
ity checks. As a result, today’s methods for data-driven facial per-
formance applications often require strategies for dealing with the
“small sample size problem”, such as augmenting the dataset with
synthetic examples.

When it comes to synthetic human modeling, recent generative
neural networks have excelled at synthesizing images depicting
realistic full-head portraits of people in static poses (e.g., Style-
GAN [KLA19] and its variants). But these methods are not yet
able to synthesize dynamic faces with realistic non-rigid motion,
as seen in a real facial performance. In terms of three-dimensional
representations, morphable 3D face models [BV99] can be read-
ily and easily sampled to synthesize novel identities and poses.
However, once again we face the challenge of synthesizing dy-
namic motion for the sampled 3D shapes. Motion synthesis, in
particular for 3D shapes, is an area that is considerably less ex-
plored. A niche area that has received some attention is the class
of methods that can animate a 3D face model from audio in-
put [KAL∗17, TKY∗17, RZW∗21], but often using a model with-
out proper motion priors. To date, there is still no comprehensive
framework for unconstrained dynamic motion synthesis that can
output arbitrarily long 3D facial performances. In the absence of
such a framework, applications that require data augmentation must
settle for simpler solutions for sampling facial expressions, such as
random walks within the latent space of 3D models that lack tem-
poral coherence and realism. The result is unsatisfactory data and a
large domain gap for applications that target real human behavior.

In this work, we address the problem of realistically modeling
and synthesizing the non-rigid deformation of 3D faces, present-
ing a framework that is directly applicable in several scenarios in-
volving 3D facial performances. Key to our approach is the dis-
entanglement of the constant facial identity component from the
time-varying performance itself, given a sequence of deforming 3D
shapes. To this end, our method is inspired by (and extends) the
semantic model in [CBGB20] that represents static faces individu-
ally, within an identity-agnostic expression latent space. Here, we
further consider the temporal dimension and propose a new model
that can represent entire sequences of expressions in facial perfor-
mances as points within an identity-agnostic performance latent

space. This new model is designed as a transformer autoencoder,
building upon transformer networks [VSP∗17] that are naturally
suitable for operating on data sequences with arbitrary length, such
as facial performances in 3D animation. First, our transformer-
based encoder converts an input neutral 3D face and a temporal
sequence of blendweight vectors into an identity code and a per-

formance code. Thanks to the transformer’s self-attention mech-
anism, our model can automatically determine important tempo-
ral correlations between arbitrary pairs of frames, in order to learn
an identity-agnostic motion manifold. As a result, we demonstrate
how this model provides a means to synthesize new performances
that generalize over arbitrary identities and sequence lengths (see
Fig. 1). This is done using our new identity-modulated decoder,
which transforms the performance code into an output performance
with the desired identity and length. Our transformer autoencoder
allows for arbitrary-length inputs and outputs at both training and
inference time, allowing us to train on captured performances of
any length. We train our model on two distinct face datasets, and
further illustrate its generalization capabilities on a third dataset
consisting of full 3D bodies.

While the main motivation for our work lies in facial animation
and data augmentation for deep learning, our method has potential
value in other fields as well. The ability to generate synthetic human
motion can aid the entertainment industry in synthesizing realistic
performances of background characters in films or video games. In
the fast moving telepresence and metaverse field, it may be useful to
generate synthetic motion of personal avatars or digital assistants.
Our method can also be used for temporal data processing, offer-
ing tools like compression, denoising, and temporal upsampling.
In the following, we also demonstrate applications such as perfor-
mance synthesis, performance retargeting and retiming, key-frame
interpolation and completion of missing performance data.

2. Related Work

So far, most work on generating 3D shapes such as faces and bod-
ies has focused on modeling geometric variability over sets of
individual shapes without any notion of temporal ordering, e.g.,
[RBSB18, GLP∗19, CBGB20, ABWB19, LBZ∗20, JWCZ19]. We
begin our review of related work starting with conventional 3D
morphable models followed by their recent neural counterparts.

Linear Parametric Shape Models. Blend shapes [LiAR∗14] are
a popular, artist-friendly representation for navigating the span of
a specific class of shapes. Blanz and Vetter [BV99] used principal
component analysis (PCA) and proposed a 3D morphable model
(3DMM) of human faces. Vlasic et al. [VBPP05] later proposed
a global multi-linear model that disentangles facial identity and
expression, which was extended by Wang et al. [WBZB20] to a
local multilinear model offering greater expressiveness. FLAME
[LBB∗17] is another practical face model that incorporates skin-
ning to articulate the jaw, neck and eyeballs. Recently, Ploumpis
et al. [PVO∗20] extended the human head 3DMMs to also include
parts other than the face like the cranium, ears, eyes, teeth, and
tongue. An excellent review of 3DMMs for human faces is given
in [EST∗20]. For human bodies, SMPL [LMR∗15] is perhaps the
most well-known, articulated linear model that has proven to be
immensely useful in several applications.

Deep Shape Models. While linear 3D shape models are
easy to control, they are severely limited by their expres-
siveness. Nonlinear, variational autoencoders were suc-
cessfully adopted for modeling human faces and bodies
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[BWS∗18, TGLX18]. Researchers working on neural ge-
ometry processing have also leveraged graph convolutional
networks [RBSB18, HHF∗19, BBP∗19, GCBZ19, ZWL∗20],
as well as other network architectures used to model static
3D shapes such as point nets operating on point clouds
[QSKG17, QYSG17], Generative Adversarial Networks (GANs)
[GLP∗19, ABWB19], and recent diffusion-based techniques
[SACOXX]. On witnessing the success of neural shape models,
researchers have also attempted to semantically control them
[LBZ∗20, JWCZ19, CBGB20, BODO20, ABWB19, FAWB18].
In the context of faces, by disentangling facial identity and
expression, either in supervised [LBZ∗20, CBGB20, BODO20] or
unsupervised fashion [JWCZ19, ABWB19, FAWB18], these pow-
erful nonlinear models can be intuitively controlled by a human
artist. However, unlike our model, none of these linear or deep
shape models include a representation of temporal dynamics. As a
result, these techniques capture solely spatial shape correlations,
but not temporal correlations. Simply traversing the paramet-
ric space induced by these models does not generally provide
sequences of 3D shapes showing realistic temporal deformations.

Motion Modeling. To synthesize temporal sequences with fa-
cial performances, previous works have explored the use of au-
dio to drive a 3D face [KAL∗17, TKY∗17]. While the method of
[KAL∗17] directly outputs a 3D mesh, the method of [TKY∗17]
outputs animation parameters that can be used to animate a generic
face rig using a static 3D morphable model. In modeling and learn-
ing the dynamics of full human bodies, DYNA [PMRMB15] ex-
tends the SMPL model by modeling soft tissue dynamics with an
auto-regressive model. SoftSMPL [SGOC20] extends DYNA with
an LSTM based architecture to model secondary dynamics. By rea-
soning about the hierarchy of joints in the human body [AKH19],
researchers have also explored unconstrained human body mo-
tion generation and key-frame inpainting with recurrent mod-
els [HKPP20, HYNP20, MBR17], VAEs [YRV∗18, LZCVDP20],
transformers [LYC∗20], generative networks [ZLB∗20], and even
normalizing flows [HAB20]. Recently, Li et al. [LVC∗21] proposed
hierarchical motion VAEs for learning a prior over human body
movements. While their work shares the spirit of learning a motion
manifold with ours, they learn a prior over fixed-length sequences
and operate on a set human skeletal topology. Likewise another
4D model specifically tied to the SMPL body model [JZW∗22]
uses gated recurrent units to model temporal dynamics of human
shapes. To our knowledge, no generic disentangled 4D morphable
shape model like ours exists for human faces.

Transformers in Shape Modeling. Transformers were originally
introduced in the context of natural language modelling [VSP∗17].
Lin et al. [LWL21a] use a vanilla transformer to reconstruct
coarsely posed human bodies and hands from images, and a learn-
able MLP to upsample the meshes to full resolution. In a follow up
work [LWL21b], the authors coupled their previous vanilla trans-
former with graph-convolutional layers and showed better accu-
racy in body and hand reconstruction. More recently, Chandran et
al. [Cha22] also proposed the use of a transformer architecture to
capture spatial correlations across vertices in static 3D shapes. In
contrast, our work uses a transformer architecture to learn temporal
correlations over sequences of shapes. Transformers for generat-

ing sequences of human bodies has also been recently explored by
Song et al. [SWJ∗22] who concentrate on a multi-person skeleton
generation use case and by Hong et al. [HZP∗22] for the genera-
tion of human body animations from text input. The recent work
by Petrovich et al. [PBV21] is closest in spirit to ours: it introduces
Actor, a transformer variational autoencoder for action-conditioned
generation of human body poses. In contrast to their work, our
model also serves a 4D morphable model for shapes and as shown
in Section 4.2, our network design converges faster and provides
more accurate reconstruction on validation sequences, thanks to our
novel performance encoder and styled transformer decoder.

In summary, we believe our work presents the first 4D morphable
model that can represent rich, coherent human shapes, with a vari-
ety of applications, as demonstrated in the following.

3. Disentangled Motion Model

In this section, we describe our transformer-based architecture that
introduces a notion of time into deep geometry models. Although
we describe the method in the context of facial performance, we
also show in Section 4 that our method can also be used to model
dynamic motion of other shapes as well, such as full human bodies.

3.1. Network Architecture

An overview of our network, a performace autoencoder for disen-
tangled motion modeling, is shown in Fig. 2. At a high level, the
input to our method is (i) a neutral 3D face shape with a partic-
ular identity, and (ii) a sequence of blend weights that describe a
facial performance. Note that, by design, identity and performance
are already disentangled on the input side. The two inputs are sep-
arately fed into an identity shape encoder and a performance en-
coder, yielding an identity latent code, zid , and a performance la-
tent code, zper f . These two codes are then supplied to the single
decoder, which in turn reproduces the output performance with the
chosen facial identity.

While the encoders allow us to represent the identity and the
overall performance with a single pair of codes, the decoder allows
us to regenerate the performance with optionally different identity
and temporal length. To accomplish this decoding task, the out-
put zid and zper f are first position-encoded (for the desired out-
put performance duration) and fed into the decoder, which has a
transformer architecture with style-based modulation. The decoder
transforms the sequence of position-encoded inputs into an output
sequence of latent shape codes. Finally, this sequence of output
codes are individually passed through a shape decoder to produce
the 3D shapes for the output performance. All modules in our ar-
chitecture are trained end-to-end, in a fully supervised manner, by
encoding and decoding the training performances with the original
(same) identity and temporal length.

Once trained, our model offers a disentangled latent space of
facial identities and performances that can be freely combined to
generate previously unseen, new outputs. When decoding a perfor-
mance with a single 3D shape, our model can behave as a con-
ventional 3D morphable shape model. But most important here is
the added ability to model the dimension of motion over time. Our
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Figure 2: Our disentangled motion model is designed as a transformer-based autoencoder and leverages self-attention to capture temporal

correlations in sequences of vectors with blend shape weights. The two separate encoders yield a pair of identity and performance codes

(zid , zper f ), which the single decoder transforms back into an output sequence of 3D shapes with the desired identity and performance length.

4-D morphable model can therefore serve as a powerful prior for
many applications in deformable shape modeling, as illustrated in
Section 4. Next, we discuss the various components of our network
and their designs in further detail.

3.1.1. Identity Shape Encoder

Following Chandran et al. [CBGB20], we model our identity shape
encoder as a simple multilayer perceptron (MLP) with 4 linear
residual layers followed by GeLU activations. The identity is pro-
vided as a neutral shape mesh (i.e., without expression) and we sub-
tract a canonical face shape (e.g., the mean of the dataset), in order
to obtain small per-vertex 3D displacements, which are flattened
into an input vector. The output of the shape encoder is a single
128-dimensional latent vector which we refer to as the identity code
zid . The identity code captures the shape of the given subject in the
neutral expression. It is important to note that this shape encoder
only ever receives neutral faces of subjects (with different identi-
ties), helping us achieve explicit disentanglement between facial
identities and expressions over time. In contrast, and as described
next, the performance encoder only receives subject-agnostic per-
formance data (codes describing generic expressions, such as blend
shape weights). It is the task of the transformer decoder to combine
the information and model the subject-specific expressions and mo-
tion of the face. While all results in our paper use this simple MLP
as the identity encoder, we evaluate different architecture choices
in our supplemental document.

3.1.2. Performance Encoder

The goal of this network module is to encode a facial performance
into a condensed latent representation. As facial performances can
be of arbitrary duration, it is important for the performance encoder
to be able to handle input sequences of varying lengths, which can
also represent small parts of longer performances. For these rea-
sons, we model our performance encoder as a transformer, an ar-
chitecture that is naturally suited for handling sequences of arbi-
trary length. As such, the transformer encoder takes an arbitrar-
ily long performance as input and always generates a single 128-
dimensional latent performance code zper f .

Another important component of our model is that the perfor-
mance encoder should be identity-agnostic in order to achieve the
desired disentanglement. A convenient, identity-agnostic input rep-
resentation of a facial shape is a set of blend shape weights, which
can be used to blend subject-specific expressions to generate de-
sired final shapes [LiAR∗14]. Facial models based on blend shapes
are very common, as they tend to be semantically meaningful and
offer artists an intuitive means of interaction. Therefore, we rep-
resent facial performances as sequences of blend weight vectors,
which will be encoded by our performance encoder.

Each frame of a performance is represented as a blend weight
vector, which we referred to as a token, following the transformer
literature. These vectors, on their own, present no notion of time.
To be processed by a transformer in a meaningful manner, the blend
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weight vectors have to be position-encoded. Two types of position-
encoding are commonly used, absolute and relative. Absolute si-
nusoidal position-encoding involves the addition of a fixed set of
sinusoids, each corresponding to a unique position, onto the in-
put tokens. However, recent work has shown that relative position-
encoding via the ALiBi attention mechanism [PSL21] gives su-
perior performance and extrapolates better to longer sequences at
inference time. We thus adopt relative encoding and first perform
blend weight embedding by applying linear projections to each in-
put token, independently, before passing them through our perfor-
mance encoder, which uses the ALiBi position encoding scheme at
each layer. Our performance encoder has 4 transformer blocks with
ALiBi position encoding. The performance encoder then mixes in-
formation across its input tokens and produces an equal number of
output tokens. To extract a single performance latent code, we fol-
low a common strategy [DCLT19, RBK21, PBV21] and append an
additional token P to the input. P is a global, 128-dimensional per-

formance query code that is optimized with the network weights.
Given the transformer output tokens, we extract only the one cor-
responding to P, which gives the desired 128-dimensional perfor-
mance code zper f . This code encapsulates the temporal dynamics
of the input blend weight vectors, in a condensed manner, within
the learned latent space of performances. Note that the identity and
performance codes need not be of the same dimension.

3.1.3. Style-Modulated Transformer Decoder

So far we have reduced the neutral shape of a subject and a per-
formance sequence of blend weight vectors into two latent codes,
zid and zper f . Our goal now is to combine the identity and perfor-
mance to obtain a subject-specific motion representation. To allow
for variable-length outputs and to properly leverage temporal corre-
lations during the decoding of 3D performances, we also model the
decoder as a transformer. Here, we introduce a novel style-based
transformer architecture that achieves better reconstructions and
faster convergence when compared to a standard transformer de-
coder (see results in Section 4.2).

We query the decoder by providing it with a sequence of in-
put tokens, whose number indicate the length of the desired output
performance. Each identity token is a position-encoded version of
the identity code zid , while each performance token is a position-
encoded version of zper f . These tokens are injected into each trans-
former layer of the decoder and combined via style-based modula-
tion, Fig. 2 (bottom-right). The output of the decoder is a sequence
of latent shape tokens, each of which encodes information on the
desired identity and the expression at the particular frame in time.

Time Encoder. As discussed in Section 3.1.2 for the encoder, rel-
ative position-encoding (PE) using ALiBi can outperform absolute
PE with sinusoids. However, here, decoding with relative PE would
result in a sequence of constant input tokens that simply dupli-
cates zid and zper f to achieve the desired output length; the decoder
would hardly be able to successfully reconstruct a performance. For
this reason, we resort to absolute PE of zid and zper f in our decoder.
Standard PE defines a fixed set of sinusoids for discrete positions in
time and adds these to the input tokens. In our case, however, this
discretization affects our ability to freely and continuously sam-
ple (interpolate) our temporal domain to decode sequences of arbi-

trary length. We thus adopt an alternative PE scheme that is sim-
ple, yet powerful: we define the decoder input as a sequence of
scalars ti ∈ [0,1] that represent normalized time indices of the de-
sired frames to be decoded. We then learn the PE γ(ti) of each ti
together with our network, by modeling the mapping γ(·) as an ad-
ditional time encoder MLP γ(·). More specifically, we model γ(·)
as an MLP with sinusoidal SiRen activations [SMB∗20]. Each en-
coded token γ(ti) is then added with a zid or zper f to complete our
continuous PE. We validate the performance of our new PE scheme
versus standard sinusoidal PE in Section 4.2 and in the supplemen-
tary material.

Style-Based Modulation. As illustrated in Fig. 2 (bottom-right),
the position-encoded performance tokens are further individu-
ally passed through an additional affine layer that extracts frame-
specific information from each performance token, leading to an
equal number of expression tokens. Each per-frame expression to-
ken is then modulated by the position-encoded identity token at
their corresponding instance in time, before they are mapped onto
queries, keys and values inside the transformer.

Decoder Architecture. Our performance decoder consists of 4
style-modulated transformer layers. The performance tokens are
converted into per-frame expression tokens at each of the 4 layers
of the decoder, resulting in layer-specific tokens that are modulated
by the corresponding identity token. Our style modulation with per-
formance tokens can be thought of as skip connections from the
performance latent space into different levels of the transformer de-
coder. We empirically observe that, analogous to the effect of skip
connections in residual networks, our style modulation at multiple
stages of the decoder allows for faster convergence and better per-
formance, likely due to better gradient flow during training. Other
than the style modulation, our decoder uses standard transformer
blocks with residual connections, layer normalizations, and GeLU
activations. The output of our transformer decoder is a sequence of
latent tokens which have both identity and frame-specific expres-
sion information. This sequence of output tokens are then passed
independently through a shape decoder to reconstruct the output
sequence of shapes.

3.1.4. Shape Decoder

The shape decoder performs the final step of converting the per-
frame output tokens from the decoder into per-frame subject-
specific 3D shapes. The architecture of our shape decoder is similar
to that of the identity shape encoder. We use a residual MLP of 4
layers and GeLU activations. The shape decoder processes each to-
ken independently and predicts a list of 3D vertex offsets, which
are added to the canonical shape to produce the desired geometry
for each frame. We evaluate and compare alternative architecture
choices for both the shape encoder and decoder in our supplemen-
tal material.

4. Results

Our disentangled motion model naturally lends itself to several ap-
plications in 4D shape modeling. This section first describes the
datasets our network was trained on, and then shows reconstruc-
tion results as validation. It also evaluates some of our design
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choices, presents ablation studies, and finally highlights applica-
tions of our motion model. For training details, additional appli-
cations (re-timing performances and mixing styles across perfor-
mances), and encoding robustness, please refer to the supplemen-
tary document.

4.1. Datasets

To show generality of our method, we apply our motion model sep-
arately on three different datasets, including 3D faces and full bod-
ies, as described below.

SDFM: The SDFM dataset consists of 3D face meshes introduced
for semantic deep face modeling [CBGB20]. The data includes
both static facial expressions as well as tracked dynamic perfor-
mances for a subset of the individuals. In this work, we use only
the subset of data corresponding to the 20 subjects with dynamic
performances (which includes both dialog speech and dynamic ex-
pressions). To make the data compatible with our network, we used
the 24 expressions to build a blend shape model for each actor,
and then converted the performances from mesh sequences to blend
weight sequences by fitting the blend shapes to each frame of ge-
ometry (following [CBGB20]). The meshes contain 5257 vertices
in correspondence, and in total we obtained 114 performance se-
quences totaling approximately 23000 frames. We used a random
sample of 90 sequences for training, and the rest for validation.
Fig. 3 (left) shows the reconstruction for 2 frames of a validation
performance for the SDFM dataset.

COMA: This dataset also contains 3D face meshes [RBSB18],
each with 5023 vertices. The data includes 12 individuals each per-
forming 12 dynamic expressions, for a total of 144 performances
and 20465 combined frames of geometry. All 144 performances
were used for training, minus randomly chosen sequences of 60
consecutive frames from 20 different performances that were used
for validation. Following a similar strategy as with SDFM, we
chose the 12 extreme expressions to create a blend shape model
per actor, and converted the mesh sequences to blend weight se-
quences for our network. Fig. 3 (center) shows the reconstruction
for 2 frames of a validation performance for COMA.

AMASS: This is a large database of human motion cap-
ture [MGT∗19] with SMPL parameterization [LMR∗15] for its
dynamic sequences. Although this parameterization is inherently
shape and pose disentangled, the human body spans a much more
diverse space of movements than faces and might bring forth dif-
ferent challenges. To demonstrate that our method can learn motion
manifolds under such challenges scenarios as well, we train our
method on a subset (CMU, DanceDB, KIT) of the AMASS dataset.
Our performance encoder now receives a sequence of SMPL pose
parameters as input instead of blend weights (Kindly refer to our
supplementary material for details on how we modify our architec-
ture to train on human bodies). We train our performance decoder
by using the SMPL model as a fixed differentiable module to de-
code vertex positions identical to [PCG∗19, PBV21]. We leave out
a random subset of 20 sequences for validation. Fig. 3 (right) shows
the reconstruction for 2 frames of a validation performance for the
AMASS dataset.
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Figure 3: We show 2 frames from reconstructed validation perfor-

mances for each of the datasets we apply our method on. Given that

the entire performance is compressed to a single 128-dimensional

code, reconstruction results are comparatively close.

Table 1: Performance Reconstruction Errors on 3 different datasets

Dataset Validation error (mm)
SDFM [CBGB20] 1.47
COMA [RBSB18] 0.62
AMASS (CMU, KIT, DanceDB) [MGT∗19] 7.19

For all three separately-trained models, a single 128-dimensional
performance code was able to reproduce the sequences of move-
ments after position-encoding. In Table 1, we show the validation
reconstruction error on the three datasets. Please also refer to the
reconstructed performances in the supplemental video. These re-
construction results demonstrate that our transformer architecture
can serve as a compressed motion manifold for the generation of
moving 3D shapes, including facial and full-body performances.

4.2. Ablation Studies

We now present experiments that motivate several of our design
choices. To keep compute costs low, we perform our ablation on a
subset of the SDFM dataset consisting of 23 dynamic facial perfor-
mances (≈5000 frames) of a single subject. We leave out 4 perfor-
mances for validating the performance of our different variants.

Architecture Design. As mentioned earlier, a related tech-
nique for generating human motion sequences is the Actor

model [PBV21], which is based on a transformer variational au-
toencoder. We aim to understand if a similar network design
would perform sufficiently well in our setting, and therefore we
replaced our performance encoder with the variational encoder
from [PBV21] and our style-modulated transformer decoder with
a standard transformer decoder identical to the one used in Actor.
For a fair comparison, we adjusted the size of the both models
to keep their capacities approximately the same. We refer to this
modified version of our architecture as the Simple variant, and we
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Figure 4: (Left) Our style modulated transformer decoder con-

verges to a lower error faster than a simple transformer encoder

- decoder architecture. (Right) Position-encoding both the identity

and performance codes results in marginally the best performance.

Our SiRen time encoder extrapolates better to unseen sequence

lengths without sacrificing performance.

trained both architectures on a dataset of real world facial perfor-
mances from a single subject. Fig. 4 analyzes the convergence and
reconstruction behavior of the two architectures. As we can see,
our proposed architecture not only converges to a lower error much
faster at training time, but also achieves lower error on validation
performances, justifying our novel network design.

Position-Encoding. In Section 3.1 we describe that the latent
codes corresponding to the identity and the performance are both
position-encoded before being passed to the transformer decoder.
The decoder requires a minimum of at least one of the codes to
be position-encoded, and thus we have three options: (1) position-
encode only the identity code, (2) position-encode only the per-
formance code, or (3) position-encode both. We evaluate all three
of these options with a small experiment on our ablation dataset,
where we use conventional sinusoids that are added on top of the
corresponding latent codes. Fig. 4 illustrates that position-encoding
both the shape code and the performance code results in the fastest
convergence of the transformer and also provides the highest recon-
struction quality. Finally, replacing the fixed set of sinusoids with
the SIREN-based MLP, as described in Section 3.1, has little ef-
fect on reconstruction quality and convergence speed. However, it
makes our position encoding compatible with continuous interpo-
lation and allows us to optimize for temporal shifts as explained in
our key-frame projection experiment below.

Shape Encoder and Decoder. Our method itself is agnostic to the
choice of the encoder and decoder that are used to represent 3D
shapes. This allows us to readily leverage advances in graph/mesh
convolution and other deep learning techniques, extending them to
model motion as well. In the supplemental document, we present
an additional ablation study where we replace the fully connected
shape encoder and decoder modules with a state-of-the-art graph
convolution technique [GCBZ19]. The supplemental material also
contains additional ablation studies on the effect of network capac-
ity and variable sequence length training on our model.
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Figure 5: One of our main applications is generating novel per-

formances, which we demonstrate here (and in the suppl. mate-

rial). Left: novel performances generated by our method trained

on the SDFM dataset. Right: two different motions sampled from

our model trained on the AMASS dataset.
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Figure 6: Our method allows to easily retarget performances from

one individual (row 1) to any others (rows 2 and 3).

4.3. Applications

We now illustrate different applications of our disentangled motion
model for 3D+time shape manipulations. As we demonstrate exam-
ple applications on human motion, please refer to the supplemental
video where the animated results can be properly appreciated.

Generating Novel Performances. A natural application of our
method is the generation of novel performances. Generating auto-
matic animation and synthetic data for training neural networks are
main motivations for our work. Importantly, the generated motions
should be coherent, smooth and look natural. Once our network is
trained, we can sample the latent space to obtain new performance
codes, which can be mapped onto any identity through our trans-
former decoder. We treat the performance latent space as a multi-
variate Gaussian distribution for sampling. Fig. 5 shows novel per-
formances on sampled identities from the SDFM dataset and two
novel performances generated by our model trained on the AMASS
subset. The movements generated by our model are smooth, realis-
tic and also capture a wide variety of deformations.

Performance Retargeting. Our method naturally disentangles the
latent identity space from the performance space. This means that
we can fix the performance code and simply vary the identity code
to retarget a performance onto different identities. Fig. 6 shows per-
formance retargeting results, where we encoded a captured perfor-
mance from one actor (row 1) and then sampled two different la-
tent identity codes to reconstruct the corresponding performance
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Figure 7: Two input performances (rows 1 and 3) can be interpo-

lated, as we show here at 50% interpolation (row 2). The trajecto-

ries of a point on the lower lip (last column) show that interpolation

is more than just simple blending of the input frames.
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Figure 8: Our method can seamlessly interpolate complex perfor-

mances on human bodies too. In this figure, two counteracting per-

formances; throwing with the right hand (rows 1) and throwing

with the left (row 3) can be interpolated, to result in interesting

inbetweens as shown here at 50% interpolation (row 2).

on the target identities (rows 2 and 3). Note that the decoder mixes
identity- and expression-specific information, allowing it to capture
identity-specific facial deformation, which is an important aspect
for maintaining realism. Performance retargeting is an important
application on its own, or can also be used as a means to generate
additional large amounts of 3D animations (by retargeting a corpus
of captured performances onto a variety of synthetic characters).

Interpolation and Extrapolation. An interesting application of
4D motion models is interpolating between two or more differ-
ent performances, which can be challenging in the case of per-
formances with different lengths. In our framework, performance
interpolation is easily achieved by interpolating the performance
codes in the latent space of the model. Once decoded, the result
is a non-linear interpolation of the inputs. Interpolating in latent
space trivially addresses the case of performances with different
lengths. In Fig. 7, we show the result of 50% interpolation between
two different performance codes. We also visualize the trajectory

of a point on the lower lip for both the original and interpolated
performances, as well as 25% and 75%. Note how the interpolated
performance is more than just a simple blending of the per frame
shapes, and produces a completely new performance with new tim-
ing and expression transitions, yet still captures the essence of the
original performances. Note that while interpolating performances
as a whole, the model does not interpolate expressions in a pair-
wise manner, but actually allows for both neighboring and distant
frames to be influenced through self-attention. As such, while one
cannot intuitively control the interpolated performance due to the
nonlinear nature of our transformer decoder, linear interpolation of
performance codes always produces a plausible, temporally smooth
performance, highlighting the smooth motion manifold learned by
our model. In Fig. 8, we show a similar example of performance in-
terpolation on human bodies too. Please refer to our supplementary
material for more animations.

Performance extrapolation is also easily enabled by our model.
As the length of the generated output sequence is dictated by the
length of the position-encoding of the latent codes, one can artisti-
cally lengthen a performance by feeding an additional number of
position-encoded identity codes as input to the performance de-
coder. As an experiment, we take our model trained on sequences
of 60 frames, and then queried longer performances of up to 120
frames at inference time. Our method produces plausible shape de-
formations even for sequences much longer than what it was trained
on, Fig. 9 (left).

Inpainting by Projection. Like any other morphable model, our
temporal motion model allows for the projection of new shapes into
its latent space. We formulate this projection step as an optimiza-
tion problem. Specifically, we optimize for a latent identity and
performance code that, when position-encoded and fed through the
pre-trained decoder, reproduces the given (potentially incomplete
or corrupted) performance data. Thus, our motion manifold can be
used to not only project full performances but also to in-paint par-
tial animations with missing data, or even sparse key-frame ani-
mations. In these cases the optimization objective is modified such
that the reconstructed performance matches the available frames
only, naturally filling in the rest with coherent motion. In Fig. 9
(right), we show an example of projecting a set of evenly spaced
key-frames into our motion manifold. Existing morphable models
have no notion of time and can only linear interpolate between key-
frame poses. In contrast, our result produces more interesting non-
linear interpolation of the key-frames.

Performance Blending and De-noising. Noisy or implausible
performances can also be projected into our motion manifold to ob-
tain more natural motions. To demonstrate this effect we stack the
blend weight vector sequences of two discontinuous facial perfor-
mances as a single temporal sequence and feed this to our perfor-
mance encoder. The resulting performance reconstructed through
the decoder shows a smooth transition from one performance to
the other (Fig. 9).

5. Conclusion

We propose a new 3D+time framework for modeling and realis-
tically synthesizing arbitrary dynamic motion for 3D shapes like
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Figure 9: Extrapolation: (left) We trace the (y-axis) trajectory of a point on the lower lip when using the same performance code to query

output performances of 60, 90 and 120 frames respectively. Here, the performance code corresponds to random transitions between extreme

facial expressions, creating large non-linear movements. Our method is able to continue the performance for durations never seen during

training. Key-frame interpolation: (middle) Our pre-trained network can be used as a motion prior for projecting key-framed facial expres-

sions. Our motion manifold allows for non-linear inpainting of missing frames, while also respecting the key-frame constraints, compared

to the linear interpolation which results in a more robotic performance. Performance Denoising: (right) We de-noise a discontinuous per-

formance by projecting a sequence with a strong discontinuity into our performance latent space. The reconstructed performance plausibly

smooths out the transition, as shown by the trajectory of a lower lip point.

human faces, with demonstrated extension to full 3D bodies. By
design, our transformer-based architecture naturally models the
motion manifold of performances while disentangling the time-
varying shape deformation from the constant identity component
in the performance. This capability allows our model to general-
ize better and to synthesize performances with arbitrary identity
and length. We show applications of novel performance genera-
tion, retargeting, interpolation, extrapolation, projection and more.
The main limitation of our method is the tradeoff between perfor-
mance compression and reconstruction quality. Naturally, a single
128-dimensional performance code cannot represent all the infor-
mation in a very long performance. An interesting direction for fu-
ture work is thus the optimal partitioning of long performances into
segments that are better suited for encoding. Another limitation of
our work is that we currently do not model physically based con-
straints. As a result, we cannot always guarantee high-quality ge-
ometry around regions like the lips (e.g., lip contacts, lip stickiness,
etc.) for faces, and cannot prevent self intersections in the case of
human bodies. Incorporating physical (anatomical) constraints into
our method could be very beneficial in future work, to further im-
prove the quality of results, especially for human bodies. Never-
theless, our disentangled motion model shows great potential in the
automatic generation of realistic animation, in the 4D manipulation
of animation data, and is also ideally suited for augmenting datasets
with coherent synthetic 3D performances for deep learning appli-
cations.
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