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Fig. 1. We present a data-driven method to remove secondary dynamic effects from performance capture data, such as jiggling skin due to root skull motion,
and a complementary method to synthesize dynamics under different root motion. Here, the color (red/green) represents the signed distance from the
dynamics-free performance (gray).

Performance capture of expressive subjects, particularly facial performances
acquired with high spatial resolution, will inevitably incorporate some frac-
tion of motion that is due to inertial effects and dynamic overshoot due to
ballistic motion. This is true in most natural capture environments where
the actor is able to move freely during their performance, rather than being
tethered to a fixed position. Normally these secondary dynamic effects are
unwanted, as the captured facial performance is often retargeted to different
head motion, and sometimes to completely different characters, and in both
cases the captured dynamic effects should be removed and new secondary
effects should be added. This paper advances the hypothesis that for a highly
constrained elastic medium such as the human face, these secondary inertial
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effects are predominantly due to the motion of the underlying bony struc-
tures (cranium and mandible). Our work aims to compute and characterize
the difference between the captured dynamic facial performance, and a spec-
ulative quasistatic variant of the same motion should the inertial effects
have been absent. This is used to either subtract parasitic secondary dy-
namics that resulted from unintentional motion during capture, or compose
such effects on top of a quasistatic performance to simulate a new dynamic
motion of the actor’s body and skull, either artist-prescribed or acquired
via motion capture. We propose a data-driven technique that comprises
complementary removal and synthesis networks for secondary dynamics in
facial performance capture. We show how such a system can be effectively
trained from a collection of acquired dynamic deformations under varying
expressions where the actor induces rigid head motion from walking and
running, as well as forced oscillatory body motion in a controlled setting by
external actuators.
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1 INTRODUCTION
Facial performance capture is an industry-standard method for gen-
erating facial animation of digital characters. More and more, actors
are donning helmet-mounted cameras that track their facial move-
ments as they run and jump around film sets, and the resulting
performances are reconstructed in 3D and transferred onto virtual
characters. Our field has seen tremendous advances in perfecting
the 3D shape recovery and tracking of the face, all the way down
to separating the the performance into meaningful layers, such as
the rigid head motion and the non-rigid facial deformation - a cru-
cial step in order to retarget the performance to a virtual character.
However, an important aspect that has been ignored thus far in
facial capture is that the recovered facial motion will contain both
the desired expression deformation as well as undesired inertial
deformation such as jiggling, especially during fast and jerky mo-
tions, but even visible during simple motions like walking. In typical
retargeting scenarios, the performance is mapped to a virtual char-
acter that often has different face proportions and almost always
different rigid head motion. Thus, the secondary dynamic motion
that is present in the captured performance will not match the char-
acter after retargeting. In this work, we present the first method
to explicitly model and remove secondary dynamic effects from
facial performance capture, and provide the ability to compose new
dynamic effects to artist-scripted head movements of the character.
Even though human soft tissue is largely constrained to follow

the skeletal motion, flesh stiffness is soft enough to manifest inertial
deformation when the underlying bones accelerate, and can cause
jiggly motion when the acceleration changes direction. It is easier to
appreciate and quantify the magnitude of the “jiggly” components
of motion when contrasted with a quasistatic model of skin deforma-
tion: We can intuitively think of quasistatic animation as taking the
keyframed sequence of all factors that drive skin deformation (e.g.
skeletal motion, active muscle contraction), and time-scaling those
keyframes so that the motion occurs much more slowly, and over a
much longer period of time. The slower we allow this procession to
take place, the more we suppress inertial motion by means of elastic
damping; at the limit of infinite time scaling, the motion can be
regarded as devoid of inertial dynamics. Scaling back the animation
to the original duration produces what we define as the correspond-
ing quasistatic performance. Our work seeks to identify in a given
performance capture sequence the difference between the captured
dynamic motion and what the corresponding dynamics-free, qua-
sistatic motion would have been. This idea can lead to either a filter
that removes secondary dynamics from a jiggly capture caused by
unintentional motion, or a means to compose artist-directed root
skeletal motion on top of a quasistatic baseline by synthesizing the
secondary dynamics that this motion would incur.

Inertial dynamics can be triggered or modulated by a number of
factors. In the human face those would be primarily the motion of
the skeletal components (cranium and mandible) and the contractile
action of muscles that form expressions or articulate the jaw. We
would consider these as intrinsic drivers of skin deformation; ex-
trinsic factors such as contact with objects or the action of external
forces (e.g. wind) will be excluded from our investigation. We also
consciously omit gravity as a separately parameterized influencing

factor, with the understanding that a change in pose that causes
gravity to act in a different direction relative to the frame of the face
would be encoded in the motion of the skull itself.

We will use the term expression to collectively refer to muscle
action that either triggers facial expressions, or moves the jaw rela-
tive to the cranium. Expression has a particular effect on secondary
dynamics, that is qualitatively distinct from the influence that head
motion incurs. Although it is conceivable that an exceptionally fast
twitch of a muscle can trigger some overshoot in skin deformation
all by itself, the magnitude of such muscle forces relative to the
damping capacity of the flesh renders dynamics of expression rather
negligible as pure triggers of secondary dynamics. However, the
formation of expression has a much more prominent modulating
effect on jiggly motion that is instigated by head kinematics, by
making certain parts of the face more stiff, while making other ar-
eas loosen up and more susceptible to secondary dynamics. The
influence of the kinematic motion of the skeletal bones is the more
direct contributor to the observed secondary dynamics; in fact, the
observed dynamic deformation depends on the history of kinematic
motion, as momentum builds up over time. We claim nevertheless
that only a finite-length history of skeletal kinematics is required to
infer secondary motion, due to the dissipatory damping behavior of
soft tissue, along with a history of the local dynamic skin behavior.
Our work proposes and tests three central hypotheses. In the

absence of extrinsic influencing factors (e.g. forces or collision):

• The difference between a given dynamic motion acquired by a
performance capture system and a quasistatic dynamics-free
version of the same performance can be adequately inferred
from (a) the kinematic history of the underlying bone within
a short window of time (forward and backward), and (b) the
corresponding sequence of the dynamic skin motion that
includes secondary effects, but without requiring knowledge
of the performed expression.

• The difference between a given quasistatic skinmotion perfor-
mance and the corresponding dynamic performance exhibit-
ing secondary effects due to rigid head motion can be inferred
from (a) the kinematic history of the underlying bone within
a short window of time (forward and backward), and (b) a
representation of the current facial expression, parameterized
by surface stretch.

• A data-driven model performing the aforementioned dynam-
ics removal and synthesis can be constructed using a mo-
tion corpus that exemplifies (a) a range of distinctive facial
expressions, combined with (b) a range of amplitudes and
frequencies of secondary motion, induced by walking, run-
ning, jumping, and for more controlled input data: forcing
an oscillatory motion of the head via a multi-speed vibrating
actuator.

Based on these hypotheses we present a data-driven deep learn-
ing approach for the tasks of removal and synthesis of secondary
dynamics in performance capture. Note that even though both tasks
aim to predict the delta between quasistatic and dynamic motion,
the processes are decoupled, since fundamentally different input
data is available for each task. Specifically, for dynamics removal
we know the kinematic history of the skin with secondary motion,
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but cannot infer an exact facial expression due to the parasitic sec-
ondary effects, whereas for dynamics synthesis we can determine
the facial expression from the quasistatic performance but have
no information about the dynamic skin history. Therefore, we con-
struct and train two separate but complementary networks, one for
dynamics removal and one for synthesis. Our methodology does not
presume knowledge of the volumetric geometry and physical prop-
erties of the underlying subject, and operates purely on sequences
of animated surface meshes, and without requiring simulation in
the processing loop.
We demonstrate the efficacy of our networks in two comple-

mentary motion processing tasks: removal of secondary dynamics
in capture data to estimate the corresponding quasistatic skin de-
formation, and data-driven emulation of secondary dynamics in a
synthetic skeletal motion sequence (distinct from the one in the
performance capture). We apply our method on three distinct indi-
viduals, showing robustness of the algorithm across facial structure
and material composition.

2 RELATED WORK
We briefly review related prior research in the domains of per-
formance capture, human character animation and simulation, on
which our work draws inspiration or has notable thematic affinity.

Simulation-based animation. Simulation from first principles is
one possibility for generating high-quality facial animation [Cong
et al. 2016]. Muscle activations are an intuitive expression descriptor,
while collisions and external forces are handled naturally. However,
a prerequisite for quality in these techniques is accurate knowl-
edge of anatomical geometry and material properties, neither of
which is trivial to acquire or model. Unreduced simulation is also
costly, with highly detailed approaches [Sifakis et al. 2006] often
opting for quasistatic approximations in lieu of full dynamic simula-
tion. Anatomical models that admit a lower-dimensional parametric
approximation of bulk motion offer opportunities for peformance
acclerations; skeleton-driven full body models with an underlying
rig enable cost-saving simplifications of the governing equations
[Capell et al. 2007] or open the possibility of the elastic deformation
problem to be solved directly in the deformation space defined by
the rig [Hahn et al. 2012, 2013]. Subspace deformation schemes can
also be hybridized with rig-actuated character models to enrich
them with secondary dynamics [Xu and Barbič 2016]. For facial
simulation, in particular, the burden of generating subject-specific
models of musculature can be alleviated by inferring blendshape-like
deformation descriptors from input scans [Ichim et al. 2016] with
an associated simulation that tracks the generated shape targets.
These shape descriptors can be used as replacement of traditional
contractile muscles and selectively activated [Ichim et al. 2017]. The
descriptors may also include expression-specific material param-
eters [Kozlov et al. 2017] or forces [Barrielle et al. 2016], creating
so-called blendmaterial and blendforce analogs to blendshape ani-
mation.
The aforementioned techniques all require, to varying degrees,

some structural knowledge about the underlying physical object:
a mesh representation of the flesh volume, an animation rig, mus-
cle geometries etc. The distribution of material properties is also

often a requirement, although those can often be inferred from an
anatomical template, or learned from data, even for damping be-
haviors [Xu and Barbič 2017]. Our goal in this paper is to remove
any such implicit requirements, and synthesize secondary dynamics
for high-resolution animated face meshes, using only the moving
meshes and skull motion obtained by performance capture as the
input to our method, along with a very small subset (≈ 10) of pre-
captured extreme expression scans of the actor. Finally, methods
that define dynamic elastic deformations of space without an ex-
plicit volumetric description of a material body [De Goes and James
2017] can be used to craft secondary dynamics, but our method also
can modulate the shape and amplitude of such secondary motion in
a pose/expression dependent fashion.

Data-driven techniques. A significant segment of prior research
tackled dynamic animation problems by leveraging collections of
performance capture data. Some of the most influential early ad-
vances in the domain of dynamic human body motion leveraged
marker-based motion capture [Park and Hodgins 2006], and used to
synthesize new motion with realistic secondary dynamics [Park and
Hodgins 2008]. Our approach to synthesizing secondary dynamics
parallels their approach in that we estimate the dynamic motion of
discrete locations on a moving model, although we furnish that esti-
mate as a direct function of the kinematic history of the underlying
bones at any given time instance, rather than integrating forward in
time an elementary oscillator; furthermore, in their work constant
parameters were inferred for said oscillators from data, while the
output of our data-driven technique is modulated via an additional
input of the local deformation, as a proxy to a local expression de-
scriptor. Combining motion capture performance data with 3D body
scans for distinct poses and human subjects allowed the generation
of models that capture body shape change due to both pose and
identity (i.e. body type) [Anguelov et al. 2005]. Such models laid
the foundation for follow-up work that incorporated the ability for
synthesis of dynamic motion, that were in turn highly influential
for our own work: The Dyna system [Pons-Moll et al. 2015] used a
second-order auto-regressive model to synthesize dynamic motion
using the kinematics of the root coordinate system, as well as the
velocities and accelerations of pose parameters. The Dynamic-SMPL
model [Loper et al. 2015] demonstrates how analogous dynamic
deformations can be produced with computations on a per-vertex
basis, rather than using triangle deformations. Follow up work [Kim
et al. 2017] demonstrated how such a statistical body model can
be used to animate all but the top layers of a tetrahedralized body
model, driving a physics-based simulation using the Finite Element
Method for the topmost layer of the body mesh that produces real-
istic elastic, dynamic response. The recently introduced SoftSMPL
model [Santesteban et al. 2020] combines a deep recurrent regressor
with a non-linear deformation subspace to synthesize soft-tissue
dynamics from body shape and motion inputs.
Our proposed approach, similar to prior work recognizes the

kinematics of the model root as the primary instigator of secondary
dynamics. A significant difference however with similar papers, es-
pecially those that model whole body motion [Kim et al. 2017; Loper
et al. 2015; Pons-Moll et al. 2015; Santesteban et al. 2020] is that those
works explicitly utilize velocities and accelerations of pose/joint

ACM Trans. Graph., Vol. 39, No. 4, Article 107. Publication date: July 2020.



107:4 • Zoss, et al.

parameters (beyond those of the body root) to infer dynamic sec-
ondary motion. For facial animation, the most direct analogue to
pose or joint parameters would be descriptors of expressions, such
as muscle activations, blendshape weights, etc. Our proposed ap-
proach has conceptual differences with this paradigm, both for its
removal and its synthesis stage. For removal, we only rely on the
kinematic history of the root head frame, as well as a brief temporal
window of the dynamic trajectory of any model vertex, which is
not associated with any specific joint or collection of joints (or their
temporal derivatives). For synthesis, the only modifier that is used
as input to our system – in addition to the head kinematics – is a
local measure of surface deformation, which is evaluated only at
the present point in time without reliance on its history. One can
see that the feasibility of this hypothesis on faces would not extend
to other types of secondary dynamics that are only loosely bound
to the underlying skeletal motion, such as clothing [de Aguiar et al.
2010] where authors rightly incorporate a description of the inertial
state of the cloth surface in their evolution scheme. In the domain of
faces, however, our hypothesis is motivated by the observation that
(a) even extremely fast twitch of muscles is unlikely to inherently
trigger ballistic overshoot, and (b) the facial flesh tissue is a highly
damped, highly constrained layer that typically subdues oscillatory
displacements within a fraction of a second.

Facial performance capture. Performance-based 3D face tracking
has become an industry-standard for character facial animation.
Highest-quality facial capture methods typically use multi-view
camera setups and sophisticated reconstruction algorithms [Beeler
et al. 2011; Bradley et al. 2010; Fyffe et al. 2011, 2017], although
advances in model-based face fitting [Garrido et al. 2013; Shi et al.
2014; Suwajanakorn et al. 2014; Wu et al. 2016] and deep learning
[Laine et al. 2017; Tewari et al. 2017] can reduce the hardware
burden. All of the previous performance capture methods suffer
from the same limitation - none consider the separation of voluntary
deformation through expression and involuntary motion due to
inertial dynamics. Our work is the first to explicitly address this
important aspect. As we take a data-driven approach, our method
relies on accurate performance capture input. For this we use the
local anatomical model fitting method of Wu et al. [2016], which
is particularly good at recovering local deformations caused by
dynamics and can perform high quality shape tracking from just a
small number of input videos.

3 OUTLINE
We present a data-driven approach for modeling the difference be-
tween a facial performance exhibiting inertial, secondary dynamics
and the same performance in the absence of inertial effects, with
the goal of transforming animation sequences in either direction.
To this end, we propose a deep learning approach to predict a per-
frame, per-point offset vector that removes secondary dynamics
from a performance capture sequence (Section 5), and a comple-
mentary network that predicts the inverse offset given a quasistatic
performance sequence allowing to synthesize secondary dynamics
(Section 6). The input to the removal network is a short time window
of bone velocity values, both past and future, together with a corre-
sponding window of stabilized skin velocities for the given point.

Stabilization here means that the head motion has been removed,
i.e. the velocities are computed in a canonical reference frame. The
input to the synthesis network is a short time window of the new
desired skull velocities and the skin surface stretch as a signature of
the current expression. The networks are trained on a large corpus
of motion patterns, including walking, running, and jumping, as
well as controlled, repeatable actuation using a vibrating platform
with variable frequency to instigate rapid skeletal motion.

Next we describe how the data used for training has been cap-
tured and preprocessed (Section 4). We will then introduce our
removal (Section 5) and synthesis networks (Section 6) followed by
a thorough evaluation (Section 7) and discussion (Section 8).

4 PERFORMANCE CAPTURE
As our method is data-driven, we require high-quality 3D facial
performance data captured with varying amounts of secondary dy-
namic effects. To this end, we built a custom multi-view camera
setup and use the facial tracking method of Wu et al. [2016] (see
Fig. 2, a). This reconstruction algorithm is chosen since it demon-
strates exceptional accuracy, both in terms of expression recovery
but also in capturing the local effects caused by dynamic motion,
and the algorithm produces a time sequence of face meshes in vertex
correspondence complete with the rigid motion of the underlying
skull, which will be essential for modeling the dynamics in our
work.

In this work we focus on secondary effects caused by the root
node of the head, i.e. the skull motion. We capture multiple subjects
undergoing several typical motions, such as walking, running, or
jumping. In order to providemore control and provokemore extreme
dynamics we further capture the subjects using an oscillating "step"
platform designed for fitness (see Fig. 2, b). Standing on one end of
the vibrating platform creates repeatable up-down motion that is
translated throughout the body to the skull, and varying the speed
of oscillation creates a range of secondary dynamic effects on the
face.

a) b)

Fig. 2. Capture Setup: We use a multi-view capture setup for reconstruct-
ing facial performances (a). In addition to capturing motions such as walking
or jumping, we also employ a vibrating "step" platform that oscillates at
varying speeds in order to induce controllable and repeatable dynamic
effects (b).

As we wish to explore how dynamics vary with expression, we
capture the subject under a number of different facial expressions,
each one held for approximately 3 seconds while performing the
above-mentioned motion patterns, plus various oscillatory speeds
on the vibrating platform, ranging from 6Hz to 11Hz. We also obtain
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a static reconstruction of each expression using the facial scanning
technique of Beeler et al. [2011], from which we build an Anatom-
ical Local Model as proposed by Wu et al. [2016]. We use the 10
expressions suggested in their paper plus an expression with re-
laxed, slightly parted lips, which we found important since for the
other expressions the lip muscles are always stiffened. As we ul-
timately want to model the dynamics for generic performances,
we also capture speech sequences while performing the same root
motion sequences, plus once without skull motion for reference. An
overview of the captured data is shown in Fig. 3 and more details
are provided in Section 7.1.

Fig. 3. DataAcquisition:We capture neutral plus 10 expressions and dialog
under various motions, such as running or jumping, as well as under 6
different up-down vibration frequencies. Top: An overview of the expressions.
Bottom: The dynamic motion induced by the highest oscillation frequency
significantly deforms the neutral mesh (left) , in particular around the cheeks
and corners of the mouth as shown at the extremes of the down (middle)
and up (right) positions just after reversing direction. The coloring red/green
encodes the signed difference with respect to the quasistatic performance,
with a scale ranging from +/- 5mm

5 MODELING AND REMOVAL OF SECONDARY
DYNAMICS

Our objective is to define a mapping F (B(t),Xi (t)) 7−→ δxi (t)
to predict the dynamic offsets δxi (t) of individual vertices i for
performance capture sequences over time t , as shown schematically
in Fig. 4.c. We will subsequently define B(t) as a descriptor of a
short-term kinematic window of the skull and Xi (t) as a descriptor
of a short-term kinematic window of an individual vertex i on the
face. Since this prediction is not the result of a temporal evolution,

the prediction can be computed directly on any given frame of the
performance sequence, considering both past and future.

a) b) c)

F
Xi

δxi

B

Fig. 4. Removal Overview: For five sample points b1−5 on the skull (a)
and 344 sample points xi on the skin (b), feature vectors B and Xi are
computed from the velocity of the points within a time window (c). From
those features, the neural network F predicts the displacement vector δxi
due to secondary dynamics.

5.1 Feature Modeling
The head motion history descriptor B(t) is defined as:

B(t) =
{{

Ûb1(t −wb ), . . . , Ûb1(t), . . . , Ûb1(t +wb )
}
, (1){

Ûb2(t −wb ), . . . , Ûb2(t), . . . , Ûb2(t +wb )
}
,

...{
Ûb5(t −wb ), . . . , Ûb5(t), . . . , Ûb5(t +wb )

}}
,

wherewb denotes the half-size of the temporal window, which we
set to 10 frames in our implementation (corresponding to approx-
imately 150ms in a 128fps capture sequence). The components of
B(t) correspond to finite difference approximations of the linear
velocities of the five selected skull landmarks b1−5 (see Fig. 4.a),
defined as

Ûbi (t) =

[
I − T(t)−1T(t − 1)

]
bi

∆t
, (2)

where the 4x4 matrix T(t) denotes the rigid head transformation at
time t and I is the identity matrix. Applying the composed transform
I− T(t)−1T(t − 1) to bi instead of computing the finite difference di-
rectly from bi (t) and bi (t − 1) ensures that the velocity is computed
relative to a canonical coordinate frame, factoring out the absolute
head pose.

Similarly, the skin motion descriptor Xi (t) is defined as

Xi (t) = { Ûxi (t −wx ), . . . , Ûxi (t), . . . , Ûxi (t +wx )} , (3)

wherewx denotes again the half-size of the temporal window. In our
experiments we setwx = wb . The components of Xi (t) correspond
to finite difference approximation of the linear velocities of a selected
set of skin landmarks xi , again expressed relative to a canonical
coordinate frame. We define those finite differences as

Ûxi (t) =
T(t)−1xi (t) − T(t − 1)−1xi (t − 1)

∆t
. (4)

Since the effect of secondary dynamics on skin is spatially smooth
we use a subset of 344 samples distributed over the face as shown
in Fig. 4.b.
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5.2 Training and inference
As stated in Section 4, our performance capture sequences includes
footage of 11 distinct expressions, where the captured subject was
asked to sustain the same facial expression while performing var-
ious tasks such as walking or running in place. Additionally, the
captured subject was asked to sustain those expressions while stand-
ing on a vibrating fitness platform, such that the head was subject
to externally induced oscillations. In this setting, the corresponding
idealized quasistatic performance would be the fixed reference ex-
pression, transforming rigidly from frame to frame bare from any
deformation. Of course, we cannot expect the captured subjects to
perfectly hold an expression for several seconds while experiencing
induced head motion. However, deformation induced by expression
change will take place at a much larger time-scale compared to sec-
ondary dynamics coming from impact impulse forces or oscillatory
actuation. Hence we use a centered moving average to generate the
quasistatic performance

yi (t) = T(t)

(
1

2w + 1

t+w∑
k=t−w

T(k)−1xi (k)

)
, (5)

with the expectation that, after factoring out the rigid head motion,
dynamic deformation away from the quasistatic sustained expres-
sion average out over the time window. In our experiments, we used
w = 10 frames, leading to an averaging window of ∼ 300ms. We can
now define the dynamic offset δxi (t) in the canonical coordinate
frame as

δxi (t) = T(t)−1 (xi (t) − yi (t)) . (6)

With these features, we train a feed-forward fully connected neural
network with 2 hidden layers of size 128 and ReLU activation func-
tions to learn the desired mapping F from the training data thus
assembled. Note that we do not learn a mapping per skin landmark
i , but a single mapping trained from all skin landmarks. Since the
features do not contain any form of identity, the network pools
information from all observations and can hence be expected to gen-
eralize better. The network is trained with L2 loss using the Adam
optimizer [Kingma and Ba 2014], with a batch size of ten thousand.
With a learning rate of 1e-3 training converges after 250 epochs.
We implemented the network in PyTorch [Paszke et al. 2019]. The
depth and width of the network were determined through empirical
evaluation, by selecting the smallest network capable of predicting
reasonable vertex offsets in a validation set. In practice, we found
that our dynamics removal results are not very susceptible to such
hyper-parameters.
The offset vector predicted by the trained network can then be

subtracted from the dynamic performance to recover the desired
quasistatic positions of the skin landmarks as

yi (t) = xi (t) − T(t)F (B(t),Xi (t)). (7)

Using yi (t) as 3D positional constraints, we employ the Anatomical
Local Model (ALM) proposed by Wu et al.[2016] to propagate the
deformation over the entire surface. Other methods, such as Lapla-
cian mesh deformation [Sorkine et al. 2004], could also be used, but
the ALM has a more meaningful regularizer that takes the actual
shape deformation subspace into account.
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Fig. 5. Removal Validation: We validate our removal network by train-
ing it separately on five different subsets of the data captured using the
vibrating platform, and testing removal of unseen motion. The first subset
(1 frequency) contains all the sustained expressions captured only at the
slowest frequency. The second subset (2 frequencies) adds the second slow-
est frequency (and so on). The error bars represent the average error of all
predicted points over all the frames of the sequence. In all five experiments,
the test sequence was a vibration frequency that was completely omitted
during training.

5.3 Validation of Dynamics Removal
To validate the removal of dynamic motion, we select one of the
sequences for which we can compute the quasistatic equivalent (neu-
tral expression at the fastest frequency) and train multiple mappings
F on a subset of the data from the vibrating platform. Using the
reconstructed head motion of the the selected sequence, we predict
δxi (t) and compare them to the captured offsets. Fig. 5 shows the
average error of all predicted δxi (t) for all frames of the sequence.
Each bar correspond to training a mapping F with the subset of
the data captured at one to five frequencies. This experiment shows
that the network can interpolate and even extrapolate to unseen
motions.

6 SYNTHESIS AND COMPOSITION OF SECONDARY
DYNAMICS

Our objective is to define a mapping H(B(t),S(t)) 7−→ δY(t) to
synthesize dynamic offsets δY(t) = {δyi (t)} given a quasistatic ani-
mation of vertex positions yi (t), as shown schematically in Fig. 6.b.
The skull motion feature vector B(t) is defined analogously to the
removal case (Section 5) over the same centered time window. In
addition to the kinematic history of the head we also require a de-
scriptor of the current expression, since expression will influence
the secondary dynamics as the underlying anatomical structures
change due to muscle activation.

6.1 Feature Modeling
We propose to leverage surface stretch as a local descriptor of how
the surface changes, computed in uv-space as

si (t) =
[
∥∆uyi (t)∥ − ∥∆uyi (0)∥

∥∆uyi (0)∥
,
∥∆vyi (t)∥ − ∥∆vyi (0)∥

∥∆vyi (0)∥

]
, (8)

where ∆u,∆v are chosen to be roughly 2mm. See Fig. 6.a for a
visualization of the computed stretch values for a given expression.
The stretch measurements of the individual samples are stacked to
form the input feature vector S(t). Note that unlike the removal
network, for synthesis we predict all displacements jointly, since
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a) b)

B

S δYH
U-Stretch V-Stretch

Fig. 6. Synthesis Overview: Given stretch S as local surface feature (a)
and a kinematic history of the skull B, the neural network H predicts the
displacement vectors δY for all sample points on the face jointly (b).

local stretch is ambiguous, but when considered globally it gives a
good description of the current expression.

6.2 Training and inference
With these features, we train a feed-forward fully connected neural
network with 2 hidden layers of size 256 and ReLu activation func-
tions to learn the desired mappingH . As for the removal network
presented in Section 5, these hyper-parameters were selected empir-
ically. The training data required, namely a quasistatic performance
with corresponding secondary dynamics displacement vectors is
generated from the corpus of data acquired in Section 4 using the
removal network described in Section 5. The network is trained
with L2 loss using the Adam optimizer [Kingma and Ba 2014], with
a batch size of 50. With a learning rate of 1e-3 training converges
after 30 epochs. The network was implemented in PyTorch [Paszke
et al. 2019].

6.3 Validation of Dynamics Synthesis
To validate the proposed synthesis approach we synthesize sec-
ondary dynamics for the quasistatic performance generated by re-
moving the original secondary dynamics from a captured input
performance, not used for training either of the networks. We can
then compute the residual between the original performance and
the resynthesized performance, as reported in Fig. 7.

7 RESULTS
In this section we first provide a detailed breakdown of the acquired
data in Section 7.1. We then evaluate our entire pipeline by re-
moving and re-synthesizing secondary dynamics on a performance
(Section 7.2). Lastly, we evaluate motion retargeting in Section 7.3.

7.1 Data Acquisition
We captured three different actors following the procedure described
in Section 4. The output of our data acquisition is more than seven
thousand frames per sustained expression and more than twenty
thousand frames of dialog performance, distributed 20% for the first
actor and 40% for the other two (the discrepancy was due to actor
availability). To properly capture the skin dynamic effects, the data
was acquired at high frame-rates (between 96 and 128 fps, depending
on the motion). Each sequence (held expression or dialog perfor-
mance) was captured multiple times as follows: under no actuation,
walking, running, jumping, and additionally under 6 oscillatory

Captured Synthesized Residual Magnitude
0mm

10mm

Fig. 7. Synthesis Validation: Performances with original (left column) and
synthesized (second column) secondary dynamics deformation. Synthesis
results coincide well with the original deformations (third column) despite
the large deformation induced by secondary dynamics (fourth column).

speeds of the vibrating platform. In order to reconstruct this data
efficiently, we employ a recently introduced GPU solver designed
for facial performance capture [Fratarcangeli et al. 2020], reducing
reconstruction time by one order of magnitude. We encourage the
reader to refer to the supplemental video for a more detailed view of
the captured data in motion. Overall, our dataset consists of almost
one hundred thousand frames with consistent mesh topology and
tracked rigid skull motion.
We train the removal network F using strictly the sequences

with held expressions as no quasistatic equivalent is available for
the dialog performance sequences. When training the synthesis
network H , we also include some dialog performance data to help
the network learn to interpolate between expressions. To generate
the surface stretch feature of those sequences, we first use the re-
moval network to generate a quasistatic frame and then compute the
stretch feature vector S(t) with respect to the neutral face. We refer
the reader to the supplemental video to appreciate the interpolation
capabilities of both networks.

7.2 Complete Pipeline for Removal and Synthesis
Here we demonstrate the entire pipeline. Given a captured perfor-
mance that contains undesired secondary dynamic effects (Fig. 8.a),
we produce a quasistatic animation free from secondary dynamics
(Fig. 8.b) using the proposed removal network F (Section 5). We
then change the motion of the head simulating two different mo-
tion patterns for the subject, and add back appropriate synthesized
secondary dynamics (Fig. 8.c and Fig. 8.d) using the proposed syn-
thesis network H (Section 6). Note that obtaining similar results
through physical simulation of skin dynamics would be extremely
challenging, even with complete anatomical muscle models, as it
can be difficult to obtain a suitable material model, deal with the
bone collisions, and support the same high resolution that we can
achieve with our data-driven method.
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Fig. 8. Entire Removal and Synthesis Pipeline: The secondary dynamics present in 8 consecutive frames of the original capture (a) is removed to produce
a quasistatic animation free from secondary dynamics (b). Using different input motions, novel secondary dynamics may be synthesized (an oscillating
up-down motion (c) and a walk cycle (d)). The coloring red/green encodes the signed difference with respect to the quasistatic performance, with a scale
ranging from +/- 5mm for (a), +/- 3mm for (c), and +/- 2mm for (d). Here you can clearly see the change in period of the oscillating dynamics between rows (a)
and (c), and the peaky dynamics induced by the walk cycle in row (d).

7.3 Retargeting
Fig. 9 shows root motion retargeting, allowing to combine the fa-
cial performance of an actor with the body performance of a stunt
double, for example. This allows to mitigate the disconnect of facial
and body performances, which oftentimes leads to uncanny valley
effects. Due to the dynamic nature of the investigated problem, re-
sults are best appreciated in the accompanying video, but in this
figure we depict a walking motion captured from Subject 1 and
the corresponding root motion retargeted to Subject 2, followed by
applying the dynamics synthesis trained on that subject. In order to
validate that simply transferring the vertex delta motion between
subjects is insufficient for retargeting, we illustrate another example
of retargeting in Fig. 10, this time using data from the vibrating
platform. The dynamics (Fig. 10.a) naïvely transferred as per-vertex
deltas (Fig. 10.b) retain too many details from the source subject
and appear uncanny on the target face (especially in motion, as

illustrated in the supplemental video). Using our method, the syn-
thesized dynamics given only the root motion of the source actor
(Fig. 10.c) better match the target character’s face, as illustrated with
a captured frame from a sequence on the same vibrating platform
frequency for reference (Fig. 10.d).

8 DISCUSSION
In this work we investigate the challenge of modeling secondary
dynamic effects in performance-driven facial animation. Taking a
data-driven approach, we propose new ideas for the prediction of
deformation caused by dynamics, modeled as the difference between
an input performance that contains secondary effects and its qua-
sistatic counterpart that exhibits no extraneous dynamic motion. We
propose a deep learning based framework to predict and remove the
secondary dynamics based on a short kinematic history of skull and
skin. Using the dynamics-free results, we train a second network to
predict secondary dynamics based on a short kinematic history of
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Fig. 9. Root Motion Retargeting: Walking motion captured from one
subject (top row) can be transferred to a second subject (bottom row), which
is for example useful to combine the facial performance of an actor with
the body performance of a stunt double. The coloring encodes the signed
difference with respect to the quasistatic performance, with a scale ranging
from +/- 2mm. Note, the neck deformation is not transferred as this is not
the aim of this work.

Source (a) Delta Transferred (b) Synthesized (c) Reference (d)

Fig. 10. Retargeting Validation: Naïvely transfering per-vertex delta mo-
tion as a means of retargeting dynamics from one subject (a) to another
(b) leads to uncanny performances that too closely resemble the source
actor. Our method more accurately synthesizes the dynamics (c) given only
the root motion of the source, as compared to a reference performance
captured under the same vibrating platform frequency (d). Top and bottom
rows correspond to two extremal frames of an oscillatory sequence.

the skull and the current expression. Combined, the two networks
allow to both remove parasitic dynamic motion from captured data,
as well as synthesize new dynamic motion to be composed onto

dynamics-free facial animation. As a result, the hypotheses and val-
idations presented in this work have great potential to impact the
widely-employed domain of performance-driven facial animation.

8.1 Limitations and future work
In order to practically validate our algorithms, we have made several
simplifying assumptions. We have so far only investigate the case of
training person specific removal and synthesis networks. The data
required to train these, however, is significant and hence it would be
extremely valuable to train person independent predictors. While
we have not thoroughly looked at the generalization capabilities
of the proposed architectures, we do believe that given sufficient
training data from multiple subjects the approach can generalize. To
test this hypothesis we applied the removal network trained on one
subject to a different subject and the results are very promising as
shown on Fig. 11 and in the accompanying video. Generalization of
the synthesis network would require a disentanglement of the skin
stretching feature and the subject’s skin properties. Our current
implementation will only generate dynamics similar to the subject
it was trained on but we believe that including additional features
such as BMI, age or other characteristics influencing the physical
properties of the skin might allow generalization of the mapping
given a sufficient amount of training data.

Dynamic P1 Removal w/ P1 Removal w/ P2 Residual

0.5 mm

0 mm

Fig. 11. Removal Generalization: Performance of subject P1 with sec-
ondary dynamics induced by the vibrating platform. Comparing a qua-
sistatic frame produced using the mapping trained on data of the same
subject and removal using a second mapping, trained exclusively on data
from another actor. While the removal network trained on a different subject
performs really well, some residual dynamics is still present. We refer the
reader to the accompanying video for the full sequence and other examples
of cross-actor generalization of the removal network.

Furthermore, while the captured data considers a lot of everyday
motions, such as walking, running or jumping, extending the data
capture to include also horizontal or angular motion patterns would
be beneficial. Doing so, however, is rather challenging. An alter-
native to acquisition might be to augment the existing data with
physical simulation, leveraging accurate anatomical models such as
[Sifakis et al. 2006] to generate training data.

Our approach so far considers only dynamics that are induced by
the moving skeleton. External forces, such as contact or even gravity,
have not yet been considered. Measuring and quantifying these
external actuators might be extremely challenging, and synthetic
data augmentation might again be the route to go.
Finally, since we only have supervised data from the static ex-

pressions to train the removal network, predicting the secondary
dynamics from performances where expressions change is likely
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suboptimal. A solution to this problem would be to concatenate the
two networks introducing cycle consistency, which would allow
to also train on the performances end-to-end without requiring
supervision.
Despite these limitations, we believe this work has provided im-

portant insight into the modeling of secondary dynamics for facial
performance capture, and represents, to our knowledge, the first
investigation into this challenging problem.
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We wish to thank Andreea Rǎdoescu for posing as a capture subject.
E.S. was supported in part by NSF grants IIS-1763638, CCF-1812944.

REFERENCES
Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,

and James Davis. 2005. SCAPE: Shape Completion and Animation of People. ACM
Trans. Graph. 24, 3 (July 2005), 408–416. https://doi.org/10.1145/1073204.1073207

Vincent Barrielle, Nicolas Stoiber, and Cédric Cagniart. 2016. BlendForces: A dynamic
framework for facial animation. Computer Graphics Forum 35, 2 (2016), 341–352.
https://doi.org/10.1111/cgf.12836

Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beardsley, Craig Gotsman,
Robert W. Sumner, and Markus Gross. 2011. High-quality passive facial performance
capture using anchor frames. ACM Transactions on Graphics (2011), 1. https:
//doi.org/10.1145/1964921.1964970 arXiv:arXiv:1011.1669v3

Derek Bradley,WolfgangHeidrich, Tiberiu Popa, and Alla Sheffer. 2010. High Resolution
Passive Facial Performance Capture. ACM Transactions on Graphics 29, 4 (2010),
41:1—-41:10. https://doi.org/10.1145/1778765.1778778

Steve Capell, Matthew Burkhart, Brian Curless, TomDuchamp, and Zoran Popović. 2007.
Physically based rigging for deformable characters. Graphical Models (Proceedings
of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation) 69, 1
(2007), 71–87. https://doi.org/10.1016/j.gmod.2006.09.001

Matthew Cong, Kiran S. Bhat, and Ronald Fedkiw. 2016. Art-directed Muscle Simulation
for High-end Facial Animation. (2016), 119–127. http://dl.acm.org/citation.cfm?id=
2982818.2982835

Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K. Hodgins. 2010. Stable
spaces for real-time clothing. ACM SIGGRAPH 2010 papers on - SIGGRAPH ’10 1,
212 (2010), 1. https://doi.org/10.1145/1833349.1778843

Fernando De Goes and Doug L. James. 2017. Regularized Kelvinlets: Sculpting Brushes
Based on Fundamental Solutions of Elasticity. ACM Trans. Graph. 36, 4, Article 40
(July 2017), 11 pages. https://doi.org/10.1145/3072959.3073595

Marco Fratarcangeli, Derek Bradley, Aurel Gruber, Gaspard Zoss, and Thabo Beeler. 2020.
Fast Nonlinear Least Squares Optimization of Large-Scale Semi-Sparse Problems.
Computer Graphics Forum (Proc. Eurographics), to appear (2020).

Graham Fyffe, Tim Hawkins, Chris Watts, Wan-Chun Ma, and Paul E. Debevec. 2011.
Comprehensive Facial Performance Capture. Comput. Graph. Forum 30, 2, 425–434.
https://doi.org/10.1111/j.1467-8659.2011.01888.x

G. Fyffe, K. Nagano, L. Huynh, S. Saito, J. Busch, A. Jones, H. Li, and P. Debevec. 2017.
Multi-View Stereo on Consistent Face Topology. Comput. Graph. Forum 36, 2 (May
2017), 295–309. https://doi.org/10.1111/cgf.13127

Pablo Garrido, Levi Valgaerts, Chenglei Wu, and Christian Theobalt. 2013. Re-
constructing Detailed Dynamic Face Geometry from Monocular Video. In ACM
Trans. Graph. (Proceedings of SIGGRAPH Asia 2013), Vol. 32. 158:1–158:10. https:
//doi.org/10.1145/2508363.2508380

Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros,
and Markus Gross. 2012. Rig-space Physics. ACM Trans. Graph. 31, 4, Article 72
(July 2012), 8 pages. https://doi.org/10.1145/2185520.2185568

Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, and Markus
Gross. 2013. Efficient simulation of secondary motion in rig-space. Proceedings of
the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation - SCA
’13 (2013), 165. https://doi.org/10.1145/2485895.2485918

Alexandru-Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly. 2017. Phace:
Physics-based Face Modeling and Animation. ACM Trans. Graph. 36, 4, Article 153
(July 2017), 14 pages. https://doi.org/10.1145/3072959.3073664

Alexandru-Eugen Ichim, Ladislav Kavan, Merlin Nimier-David, and Mark Pauly. 2016.
Building and Animating User-specific Volumetric Face Rigs. (2016), 107–117. http:
//dl.acm.org/citation.cfm?id=2982818.2982834

Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook Kim,
Michael J. Black, and Sung-Hee Lee. 2017. Data-driven Physics for Human Soft
Tissue Animation. ACM Trans. Graph. 36, 4, Article 54 (July 2017), 12 pages. https:
//doi.org/10.1145/3072959.3073685

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG]

Yeara Kozlov, Derek Bradley, Moritz Bächer, Bernhard Thomaszewski, Thabo Beeler,
and Markus Gross. 2017. Enriching Facial Blendshape Rigs with Physical Simulation.
Computer Graphics Forum (Proc. Eurographics) 36, 2 (2017).

Samuli Laine, Tero Karras, Timo Aila, Antti Herva, Shunsuke Saito, Ronald Yu, Hao Li,
and Jaakko Lehtinen. 2017. Production-level facial performance capture using deep
convolutional neural networks. In Proceedings of the ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. ACM Press, Los Angeles, CA, 1–10. https:
//doi.org/10.1145/3099564.3099581

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-person Linear Model. ACM Trans. Graph. 34, 6,
Article 248 (Oct. 2015), 16 pages. https://doi.org/10.1145/2816795.2818013

Sang Il Park and Jessica K. Hodgins. 2006. Capturing and Animating Skin Deformation
in Human Motion. (2006), 881–889. https://doi.org/10.1145/1179352.1141970

Sang Il Park and Jessica K. Hodgins. 2008. Data-driven Modeling of Skin and Muscle
Deformation. , Article 96 (2008), 6 pages. https://doi.org/10.1145/1399504.1360695

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J. Black. 2015. Dyna:
A Model of Dynamic Human Shape in Motion. Vol. 34. 120:1–120:14 pages.

Igor Santesteban, Elena Garces, Miguel A. Otaduy, and Dan Casas. 2020. SoftSMPL:
Data-driven Modeling of Nonlinear Soft-tissue Dynamics for Parametric Humans.
Computer Graphics Forum (Proc. Eurographics) (2020).

Fuhao Shi, Hsiang-Tao Wu, Xin Tong, and Jinxiang Chai. 2014. Automatic Acquisition
of High-fidelity Facial Performances Using Monocular Videos. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia 2014) 33, 6 (2014).

Eftychios Sifakis, Andrew Selle, Avram Robinson-Mosher, and Ronald Fedkiw. 2006.
Simulating Speech with a Physics-Based Facial Muscle Model. Eurographics/ ACM
SIGGRAPH Symposium on Computer Animation (2006) (2006).

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. 2004. Laplacian
surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium
on Geometry processing. 175–184.

Supasorn Suwajanakorn, Ira Kemelmacher-Shlizerman, and Steven M. Seitz. 2014.
Total Moving Face Reconstruction. In ECCV (4) (Lecture Notes in Computer Science),
Vol. 8692. Springer, 796–812.

Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard,
Patrick Perez, and Christian Theobalt. 2017. MoFA:Model-based Deep Convolutional
Face Autoencoder for Unsupervised Monocular Reconstruction. In Proc. of IEEE
ICCV.

Chenglei Wu, Derek Bradley, Markus Gross, and Thabo Beeler. 2016. An Anatomically-
constrained Local Deformation Model for Monocular Face Capture. ACM Trans.
Graph. 35, 4, Article 115 (July 2016), 12 pages. https://doi.org/10.1145/2897824.
2925882

Hongyi Xu and Jernej Barbič. 2016. Pose-space subspace dynamics. ACM Transactions
on Graphics 35, 4 (2016), 1–14. https://doi.org/10.1145/2897824.2925916

Hongyi Xu and Jernej Barbič. 2017. Example-based Damping Design. ACM Trans. Graph.
36, 4, Article 53 (July 2017), 14 pages. https://doi.org/10.1145/3072959.3073631

ACM Trans. Graph., Vol. 39, No. 4, Article 107. Publication date: July 2020.

https://doi.org/10.1145/1073204.1073207
https://doi.org/10.1111/cgf.12836
https://doi.org/10.1145/1964921.1964970
https://doi.org/10.1145/1964921.1964970
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1145/1778765.1778778
https://doi.org/10.1016/j.gmod.2006.09.001
http://dl.acm.org/citation.cfm?id=2982818.2982835
http://dl.acm.org/citation.cfm?id=2982818.2982835
https://doi.org/10.1145/1833349.1778843
https://doi.org/10.1145/3072959.3073595
https://doi.org/10.1111/j.1467-8659.2011.01888.x
https://doi.org/10.1111/cgf.13127
https://doi.org/10.1145/2508363.2508380
https://doi.org/10.1145/2508363.2508380
https://doi.org/10.1145/2185520.2185568
https://doi.org/10.1145/2485895.2485918
https://doi.org/10.1145/3072959.3073664
http://dl.acm.org/citation.cfm?id=2982818.2982834
http://dl.acm.org/citation.cfm?id=2982818.2982834
https://doi.org/10.1145/3072959.3073685
https://doi.org/10.1145/3072959.3073685
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3099564.3099581
https://doi.org/10.1145/3099564.3099581
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1145/1179352.1141970
https://doi.org/10.1145/1399504.1360695
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/2897824.2925882
https://doi.org/10.1145/2897824.2925882
https://doi.org/10.1145/2897824.2925916
https://doi.org/10.1145/3072959.3073631

	Abstract
	1 Introduction
	2 Related Work
	3 Outline
	4 Performance Capture
	5 Modeling and removal of secondary dynamics
	5.1 Feature Modeling
	5.2 Training and inference
	5.3 Validation of Dynamics Removal

	6 Synthesis and composition of secondary dynamics
	6.1 Feature Modeling
	6.2 Training and inference
	6.3 Validation of Dynamics Synthesis

	7 Results
	7.1 Data Acquisition
	7.2 Complete Pipeline for Removal and Synthesis
	7.3 Retargeting

	8 Discussion
	8.1 Limitations and future work

	Acknowledgments
	References

