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Abstract
Artistically controlling fluid simulations requires a large amount of manual work by an artist. The recently presented transport-
based neural style transfer approach simplifies workflows as it transfers the style of arbitrary input images onto 3D smoke
simulations. However, the method only modifies the shape of the fluid but omits color information. In this work, we therefore
extend the previous approach to obtain a complete pipeline for transferring shape and color information onto 2D and 3D
smoke simulations with neural networks. Our results demonstrate that our method successfully transfers colored style features
consistently in space and time to smoke data for different input textures.

CCS Concepts
• Computing methodologies → Physical simulation; Image processing; Neural networks;

1. Introduction

Physically-based fluid simulations have become an integral part
of special effects in movie production and graphics for computer
games. However, artistic control of such simulations is not well
supported and hence remains tedious, resource intensive and costly.
Recent work on fluid control include target-driven optimization to
find artificial forces to match given keyframes [TMPS03, PM17]
and velocity synthesis methods that allow augmentation with tur-
bulent structures [TKG08, SSN08]. With a neural flow stylization
approach [KAGS19], more complex styles and semantic structures
have been transferred in a post-processing step. Features from nat-
ural images are transferred onto smoke simulations, enabling gen-
eral content-aware manipulations ranging from simple patterns to
intricate motifs. The method is physically inspired, as it computes
the density transport from a source input smoke to a desired tar-
get configuration. Stylizations from different camera viewpoints
are merged to compute a 3D reconstruction of the smoke. While
structural information is successfully transferred onto smoke data,
color information was omitted. However, transferring texture infor-
mation represents a valuable control tool for artists to change the
appearance of a fluid. Our work therefore extends the transport-
based neural flow stylization of Kim et al. [KAGS19] with a sub-
sequent color optimization step that allows artists to control both
style and color based on example images. The application is related
to [JFA∗15] that uses a flow-guided synthesis approach to transfer
textures onto fluids.

Flow stylization approaches extend existing image style transfer
methods with spatio-temporal constraints. In the image process-
ing literature, [GEB16] automated the style transfer with neural
networks and introduced several ways for the user to control the
stylization effects [GEB∗17]. Multiple follow-up works added new

terms to the loss function of the original method to enhance the
performance of the method. Histogram loss [RWB17] prevents in-
stabilities in the form of varying brightness and contrast through-
out the stylized image and avoids washed out results, Laplacian
loss [LXNC17] preserves low-level details of the content image
and a regularization term for photorealistic style transfer [LPSB17]
overcomes distortion problems that appear with the original loss
function. [RDB18] explored style transfer for video sequences en-
suring the resulting frames to be temporally coherent and stable.

The optimization of three-dimensional smoke data is possible
through the use of a differentiable renderer. A differentiable ren-
derer enables the computation of derivatives [LB14], and recent
approaches presented a multipurpose differentiable ray tracer that
integrates various parameters such as camera pose, scene geom-
etry, materials, and lighting parameters [LADL18, MNDJ19]. A
lightweight and efficient differentiable renderer can be used in our
case, as for flow stylization only the main flow structures need to
be represented [KAGS19].

2. Preliminaries

Our approach for colorized smoke stylization is based on the orig-
inal neural style transfer for images [GEB16] and the transport-
based neural style transfer for fluid simulations [KAGS19], which
are briefly introduced in the following.

2.1. Neural Style Transfer

Neural Style Transfer (NST) is the process of synthesizing an im-
age I from a style image IS and a content image IC through opti-
mization using a convolutional neural network (CNN). The CNN
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is trained for natural image classification and its layers provide the
feature space for the stylization. Using this CNN, the stylization
can be formulated as an optimization problem as

I∗ = argmin
I

αLc(I, IC)+βLs(I, IS), (1)

where Lc is the content loss, Ls is the style loss and α and β are
weighing factors. The content loss is spatially aware and aims at
preserving the overall structure of IC in the synthesized image. The
style loss on the other hand optimizes for style structures indepen-
dently of their image position. Let F l

I be the feature representation
of image I on layer l. The content loss LC and the style loss LS can
then be formulated as

Lc(I, IC) = ∑
l
(F l

I −F l
C)

2 (2)

Ls(I, IS) = ∑
l
(Gl

I−Gl
IS)

2 (3)

where Gl
X = (F l

X )
T (F l

X ) is the Gram matrix of the feature represen-
tation on layer l of an image X .

2.2. Transport-Based Neural Style Transfer

Transport-Based Neural Style Transfer (TNST) extends the original
NST algorithm to transfer the appearance of a given image to flow-
based smoke density. As opposed to NST where the stylized image
is optimized, the optimization formulation for TNST outputs a ve-
locity field. Consequently, no image pixels are modified directly.
Instead, the input density d is transported by the optimized veloc-
ity field v∗ to obtain the final stylized density d∗. v∗ and d∗ are
obtained through optimization analogously to Equation 1 with

v∗ = argmin
v

αLc(Rθ(T (d,v)), IC)+βLs(Rθ(T (d,v)), IS) (4)

d∗ = T (d,v∗). (5)

The transport function T (d,v) advects the density by the given ve-
locity. The renderer Rθ(d) renders a 2D greyscale image of the
density d at viewpoint angle θ. Several viewpoints can be selected
for the optimization to avoid distortions in the final stylized 3D
density d∗. The loss functions LC and LS maintain their definitions
from Equation 2 and 3. The content loss can be neglected in our
case, as we only have a style image and there is no content that
needs to be preserved.

To extend the single frame stylization to multiple frames in a
time coherent way, TNST aligns the stylization velocities with the
input velocities. This is done recursively for a pre-defined window
size. Increasing the windows size enhances smoothness between
consecutive frames, but simultaneously leads to larger memory re-
quirements due to the recursive nature of the velocity alignment.

3. Method

Our method uses both NST and TNST as illustrated in Figure 1. In
a first step, TNST is applied to the input frames of the smoke sim-
ulation to transfer structural information. This step corresponds to
the approach of Kim et al. [KAGS19], and optimizes density values
at each point. In a second step, we apply a color style optimization
that modifies the color at each point while keeping the density val-
ues constant.

Figure 1: Two step pipeline for colorized image style transfer.

3.1. Color Style Optimization

In the second step of the pipeline, color is added to the stylized
mask d∗ from the previous step. This part creates and optimizes
color channels for d∗, but does not further modify the density mask.
The colorization process is performed using the original NST algo-
rithm with a few alterations. Again, the desired style is given by the
style image IS and there is no content to preserve or transfer. Hence,
we formulate the color style optimization as a simplified version of
Equation 1 without content loss:

d∗RGB = argmin
d
Ls((RRGB,θ(d), IS). (6)

Since color information is now relevant for the optimization, the
rendererRRGB,θ(d) produces a 2D color image from viewpoint θ.

The proper initialization is crucial for the success of the color
style optimization. As opposed to the original NST, there is no
content loss, so any bias that is introduced in the initial condition
can persist in the output. When starting the color style optimiza-
tion from the stylized density d∗, the initial pixel values of the area
that will be stylized are close to white. This leads to washout ef-
fects as shown in Figure 2(a). For the result in Figure 2(b) on the
other hand, the stylized mask d∗ is initially multiplied pointwise
with white noise as shown on Figure 2(c). This initial condition
converges to a satisfying result.

(a) Output from density (b) Output from noise (c) Noise mask

Figure 2: Influence of initialization with a) stylized density only, b)
density combined with noise as shown on c).

The color style optimization needs to be constrained to only op-
timize on the pixels that actually contain density. We obtain a guid-
ance mask T l by downsampling d∗ to the size of each layer l that
was selected for the style feature extraction and apply it to the style
feature representation on layer l with [GEB∗17]

F̂ l
G(I) = T l ◦F l

G(I), (7)
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where ◦ denotes element-wise multiplication. This way of guiding
the stylization will lead to some overflow at the boundaries, because
the receptive fields of neurons near the boundaries can overlap the
masked out regions. This overflow can be removed from the final
stylized density by applying the guidance mask once in the end.

3.2. Rendering

Both renderersRθ andRRGB,θ are part of the optimization pipeline
and therefore need to be differentiable and lightweight.Rθ renders
the smoke by calculating the pixel intensity along a ray in normal
direction to the camera as proposed by [KAGS19]. More specifi-
cally, the transmittance τ(x) and the intensity I at each image pixel
i j are defined [FWKH17] as

τ(x) = e−γ
∫ rmax

0 d(ri j)dr (8)

Ii j =
∫ rmax

0
d(ri j)τ(ri j)dr. (9)

The transmittance factor γ defines how much light is lost due to
absorption and scattering, d(x) evaluates the amount of density at
point x, ri j is the ray through pixel i j normal to the camera and
rmax is the length of the ray. For the color style optimization, we
extend this formulation to support color fields. The C = {R,G,B}
emission values at each pixel i j are computed with

Ci j =
∫ rmax

0
C(ri j)d(ri j)τ(ri j)dr. (10)

The density di j is multiplied into the emitted colors and can be seen
as the emission factor at each point. Note that the RGB emission
values are normalized to [0..255]. The impact of the transmittance
value onto the colorized result is illustrated in Figure 3.

4 Method

where R(rij), G(rij) and B(rij) evaluate the red, green and blue color field at pixel ij. The
density dij is still multiplied into the emitted colors and can be understood as the emission
factor at each point. Figure 4.12 shows the output of the differentiable renderer R✓ and the
differentiable color renderer RRGB,✓ for multiple transmittance factors.

Figure 4.12: Output of the differentiable renderer without and with color channels for different transmit-
tance factors � = [0.001, 0.1, 0.5, 1, 1.5, 2].

The emitted colors RGB need to be normalized in a meaningful way as the calculations from
Equation 4.13 are not bound to the original color range from 0 to 255. Thus, in case of any
overflow occurring, the new color range is mapped back to the original range from 0 to 255
with

R̂ij =
Rij

RGBmax

⇥ 255

Ĝij =
Gij

RGBmax

⇥ 255

B̂ij =
Bij

RGBmax

⇥ 255

(4.14)

where RGBmax is defined as the scalar maximum value over all three color channels. It is
important to only perform this operation if the maximum color value effectively exceeds the
original color range to avoid rescaling the brightness of the input image.

4.3.2 Camera Views

By now, the pipeline, including the new rendering step, is able to produce a convincing looking
stylized result if it is rendered at the viewpoint angle ✓ that was used during the optimization.

24

Figure 3: Output of the differentiable renderer without and
with color channels for different transmittance factors γ =
[0.001,0.1,0.5,1].

3.3. Controlling the Stylization

We used the VGG-19 network [SZ15] for the feature extraction,
which consists of 19 layers and has been trained for natural image

classification. The stylization can be controlled by selecting layers
in the CNN. The deeper a layer is positioned in the CNN, the higher
is the complexity of the extracted features, as illustrated in Figure
4(a) for two different input images. The shallow layers optimize for
low-level features, while deeper layers generate high-level features.
The size of the stylized features depends on the size of the input
image. Tiling can be used to progressively increase the input size
to generate smaller scale structures as shown in Figure 4(b).

(a) Feature complexity increases with deeper layers of the CNN
(’relu1_1’.. ’relu4_1’).

(b) Structure size can be controlled by tiling the input.

Figure 4: Stylized structures can be controlled by selecting corre-
sponding layers in the CNN and tiling the input image.

4. Results

We implemented the stylization with TensorFlow and used the
Adam optimizer with a learning rate of 0.5 and 1 for the 2D and
3D examples, respectively, for 300 iterations. For our results, we
selected the layers ’relu2_1’ and ’relu3_1’ of the VGG-19 network
for the feature extraction.

We applied the style and color transfer to the 2D smoke data
set of [JFA∗15] using different input images as shown in Figure
5. Color information is transferred coherently in space and time
(see accompanying video sequences†), and hence complements the
mask stylization of [KAGS19].

The 3D results were computed with a data set of [KAGS19],
and shows the colorized outcome with the 3D pipeline that opti-
mizes for multiple viewpoints as described in the original paper
of [KAGS19]. The lightweight and hence efficient differentiable
color renderer is sufficient to capture the most relevant structures.
We illustrate this by comparing the 3D results with their 2D coun-
terparts in Figure 6.

† https://youtu.be/TyNlaBoP6oI
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Figure 5: 2D single frame color stylization applied to a data set of
[JFA∗15] using different input images (blue strokes, flower, flame,
fire and volcano).5 Results

(a) Obtained with 3D pipeline (b) Obtained with 2D pipeline

(c) Obtained with 3D pipeline (d) Obtained with 2D pipeline

Figure 5.13 (cont.): Comparison of optimization with 3D pipeline (left) and 2D pipeline (right).
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5 Results

(a) Obtained with 3D pipeline (b) Obtained with 2D pipeline

(c) Obtained with 3D pipeline (d) Obtained with 2D pipeline

Figure 5.13 (cont.): Comparison of optimization with 3D pipeline (left) and 2D pipeline (right).

46
Figure 6: 3D (left) and 2D (right) color stylization applied to a
data set of [KAGS19] for two input images (blue strokes and fire).

5. Conclusion

In this work we extended an existing flow stylization approach by
adding color transfer. The color stylization is coherent in space and
time, and can be applied to 2D and 3D smoke densities. Our method
directly optimizes for the stylized images during the training stage
in an online fashion. Other research in the field of neural style trans-
fer explores model-optimization based offline techniques. This type
of style transfer technique moves the time intensive optimization
into the phase of training the model, thereby gaining the advan-

tage of stylizing images in a single forward pass. Using this opti-
mization method would greatly reduce the time that the stylization
takes. Further, for the best outcome, the differentiable renderer that
is used in the optimization should match the final high-quality ren-
dering of the smoke. Our differentiable renderer could be adapted
accordingly but at the cost of increased computation time.
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