
Tangent-Space Optimization for Interactive Animation Control

LOÏC CICCONE, ETH Zürich
CENGIZ ÖZTIRELI, DisneyResearch|Studios
ROBERT W. SUMNER, DisneyResearch|Studios and ETH Zürich

Fig. 1. Left: In traditional animation the character’s deformations are driven by rig controls (light blue), which provide fine control but require a granular
interaction. Middle: Our system provides an armature (dark blue) that coordinately drives the rig elements for a more natural and flexible character
manipulation. Right: We introduce a curve representation (purple) for easily controlling the interpolation between key poses without adding any keyframe.

Character animation tools are based on a keyframing metaphor where artists
pose characters at selected keyframes and the software automatically inter-
polates the frames inbetween. Although the quality of the interpolation is
critical for achieving a fluid and engaging animation, the tools available to
adjust the result of the automatic inbetweening are rudimentary and typi-
cally require manual editing of spline parameters. As a result, artists spend
a tremendous amount of time posing and setting more keyframes. In this
pose-centric workflow, animators use combinations of forward and inverse
kinematics. While forward kinematics leads to intuitive interpolations, it
does not naturally support positional constraints such as fixed contact points.
Inverse kinematics can be used to fix certain points in space at keyframes,
but can lead to inferior interpolations, is slow to compute, and does not
allow for positional contraints at non-keyframe frames. In this paper, we

Authors’ addresses: Loïc Ciccone, ETH Zürich; Cengiz Öztireli, DisneyResearch|Studios;
Robert W. Sumner, DisneyResearch|Studios, ETH Zürich.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART101 $15.00
https://doi.org/10.1145/3306346.3322938

address these problems by formulating the control of interpolations with
positional constraints over time as a space-time optimization problem in
the tangent space of the animation curves driving the controls. Our method
has the key properties that it (1) allows the manipulation of positions and
orientations over time, extending inverse kinematics, (2) does not add new
keyframes that might conflict with an artist’s preferred keyframe style, and
(3) works in the space of artist editable animation curves and hence inte-
grates seamlessly with current pipelines. We demonstrate the utility of the
technique in practice via various examples and use cases.

CCS Concepts: • Computing methodologies → Animation; Graphics
systems and interfaces.

Additional Key Words and Phrases: Interpolation, Inverse kinematics

ACM Reference Format:
Loïc Ciccone, Cengiz Öztireli, and Robert W. Sumner. 2019. Tangent-Space
Optimization for Interactive Animation Control. ACM Trans. Graph. 38, 4,
Article 101 (July 2019), 10 pages. https://doi.org/10.1145/3306346.3322938

1 INTRODUCTION
Character animation software provides the tools, algorithms, and
interfaces that artists use to breath life into animated characters.
Contemporary software uses a keyframing metaphor inspired by
classic hand-drawn animation: Artists pose characters at selected

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322938
https://doi.org/10.1145/3306346.3322938

101:2 • Ciccone, L. et al

keyframes and the frames in-between are automatically interpo-
lated. While typical software offers many controls and methods for
posing, the tools available to adjust the result of the automatic in-
betweening are comparatively rudimentary. Artists must manually
edit the parameters of interpolation splines for individual animation
variables. In this pose-centric view, the least burdensome way to
adjust the interpolated movement is to insert additional keyframes,
which displeasingly complicates the parametrization of animation
curves and impedes further refinement. As a result, artists spend a
tremendous amount of time posing and setting keyframes (as ex-
posed in the prestudy of Kytö et al. [Kytö et al. 2017]) in order to
achieve a fluid animation that obeys to the principles of movement
and timing characteristic of high-quality animation [Johnston and
Thomas 1981; Whitaker and Halas 2013].

For articulated movement, the situation is further complicated.
The artist is given the choice of either manipulating angles with
forward kinematics (FK) or positions with inverse kinematics (IK).
However, the choice made when posing the character will also deter-
mine the nature of the interpolation between these poses: FK results
in smooth arcs while IK produces linear movement, especially useful
for contact points. This forces the artist to carefully plan when to use
FK and IK. Furthermore, only identical kinematic configurations can
be interpolated since existing systems assume that IK chains have
the same bases and end-effectors. This forces riggers to define fixed
IK chains on the character and prevents state-of-the art techniques
in flexible IK definition to be used in a production environment.
In addition, IK-based controls slow down the rig evaluation, so a
limited set is typically placed on the characters, which restricts the
freedom of interaction. For example, artists rarely put IK on fingers
due to the complexity of the hand structure.
Our work addresses these problems with a novel tangent-space

optimization framework and a temporal interface for articulated
movement that allows artists to intuitively adjust in-betweenings
(Fig. 2). The key feature of our technique is that the optimization
solves for the tangents of interpolation at existing keyframes. As
a result, it does not add any complexity to the animation curves
and is non intrusive to the artist workflow. The optimization sup-
ports user-provided or character-implied constraints such as joint

Fig. 2. Left: Traditional interface for editing interpolations — the artist must
manually edit the tangents of multiple attributes’ animation curves. Right:
Our interface — the artist directly manipulates the trajectory of an element,
and our solver optimizes for the tangents that match the user inputs.

angle limits and stiffness for more natural deformations. Our system
works on top of typical character controls and does not add other
complexities or structures to drive the animation. Furthermore, our
method provides an abstraction on top of posing and animation that
completely eliminates the need for fixed IK chains.
We illustrate how our framework improves current animation

pipelines with various examples and use-cases with both profes-
sional artists and novice users. In summary, we make the following
contributions:

• A formulation of interpolation as optimization in the tangent
space of rig controls with given positional, joint angle, and
stiffness constraints. This leads to real-time interpolation
control, which enables artists to work with fewer keyframes
and cleaner animation curves.

• An interactive interface that utilizes the optimization frame-
work and allows editing space-time curves for precise loca-
tions of controls during interpolations. This leads to a more
fluid and natural interaction than with merely adjusting ani-
mation curves for transformations.

• A system that alleviates the need of fixed IK chains for inter-
polation, and thus unlocks the use of state-of-the art posing
techniques in production environments.

2 RELATED WORK
IK based interpolation. As elaborated, professional animators use

the concept of keyframing when animating characters. Despite be-
ing the most common approach for authoring motions, it provides a
very indirect control on interpolations where animators cannot spec-
ify positional constraints. IK controllers, which have been widely
studied in computer graphics and robotics research [Aristidou et al.
2018], allow fixing the position of some end effectors at keyframes,
which are then interpolated to generate the motion. However, IK
based interpolation requires having a fixed constraint configuration
(fixed bases and end effectors), leads to inferior linear interpolations
of positions compared to artistic arcs that naturally arise when in-
terpolating angles, and leaves animators with the difficult choice
of when to switch between IK and FK for interpolation. In most
cases, it is very challenging to find the right sequence of FK/IK for
the desired animation results. In contrast, our technique completely
abstracts away the choice of FK/IK, and augments the current ani-
mation workflow by allowing the user to simultaneously edit key
poses and their interpolations in the comfort of a single viewport.

Systems for posing. Many works explored different interfaces for
crafting poses, such as the pin-and-drag metaphor [Shi et al. 2007;
Yamane and Nakamura 2003], the use of reference poses [Choi
and Lee 2016; Wei and Chai 2011], sketch abstractions [Guay et al.
2013; Hahn et al. 2015; Öztireli et al. 2013] or even physical de-
vices [Glauser et al. 2016; Yoshizaki et al. 2011]. However, none of
these techniques tackles the challenge of controlling the interpola-
tion between the crafted poses at keyframes. The mentioned meth-
ods apply transformations on FK values of the character controls,
and hence are not suitable to constraint positions in the in-between
frames (such as for contacts). This makes them impractical in the
contemporary professional workflow. The curve representation and
algorithmwe propose enable the positional control of interpolations,

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

Tangent-Space Optimization for Interactive Animation Control • 101:3

even when the motion is driven by FK controls. This finally permits
the integration of such advanced posing techniques into production
environments.

Space-time constraints. In 1988,Witkin and Kass introduced space-
time constraints [Witkin and Kass 1988]. In this paradigm, a user
can specify high-level spatial and temporal constraints and the
motion is produced automatically via non-linear optimization. This
inspired a lot of further research, including many works focusing
on the animation of articulated characters for providing a user
interface [Cohen 1992], transitions between motion segments [Rose
et al. 1996], edition of existing animations [Gleicher 1997], and even
motion retrieval in a large database [Min et al. 2009]. Although they
allow for simple editing of motion via high level properties, they
poorly integrate in the professional animation workflow because
of the lack of fine control. The user needs to indirectly specify
motion by balancing hard and soft terms of the cost function to
achieve a desired animation. Fine-tuning the result is also laborious
as most often the parametrization of the motion curves is altered
based on the computational needs of the system. Furthermore, with
space-time constraint techniques, the set of achievable motions is
restrained by the physical formulations or the library of movements
the optimization is based on.

Automatic interpolation. A particular category of space-time con-
straints techniques seek to automatically generate believable transi-
tions by relying on simulations, databases or heuristics. Important
work with probabilistic models of humanmotion was used for filling
gaps of animations [Chai and Hodgins 2007; Lehrmann et al. 2014;
Wang et al. 2008], collision detection was used to correct default
interpolations [Nebel 1999], and more recent research used deep
learning to generate animations that interpolate key poses [Harvey
and Pal 2018; Zhang and van de Panne 2018]. To allow for more
controllability, Koyama and Goto [2018] provide mathematical for-
mulations for the control of an optimization based on physically
inspired energy terms. Their work (OptiMo) has the additional bene-
fit of modifying tangents instead of adding keyframes, which is also
our motivation. However, their approach is fundamentally different
from ours: While we aim at real-time control of interpolations with
an intuitive interface directly in the viewport, Koyama and Goto pro-
vide an indirect and offline motion manipulation tool via sliders and
graph editors. Furthermore, OptiMo is demonstrated for relatively
simple animations of singled-chained characters’ sections while our
tool integrates well with the rest of the workflow. We provide the
animator with full control without making assumptions about their
intentions (e.g. obtaining a physically realistic movement).

Differential manipulation. Gleicher and Witkin [1991] introduced
the concept of differential manipulation in order to provide an in-
terface for directly manipulating objects without having to edit
individual parameters. Conceptually our approach is similar to their
work, yet applied to a different domain, since we allow directly
manipulating in-betweenings through a graphical interface instead
of editing individual tangents of interpolation.

Space-time curves. Some previous works have explored the con-
cept of space-time curves for authoring or editing motions. Guay et
al. [2015] enable the creation of a full character motion using a single

stroke and refine it using additional types of stroke edits. Unfortu-
nately, their strokes are designed around specific types of motions
such as bouncing, rolling, and waving, and their work only demon-
strates a few simple characters (e.g. no bipeds nor quadrupeds).
Choi et al. [2016] allow editing motion via a sketch-based interface.
Using screen-space strokes to define 3D movements, their technique
ends up with an underconstrained problem and thus needs to make
assumptions on the user’s intentions. Ciccone et al. [2017] propose
to edit a cyclic motion through the manipulation of a closed 3D
spline, but their work exploits the IK chains already present on the
rig, which limits the set of trajectories that can be edited on the
character. Additionally, those techniques require control on each
frame of the animation, which is equivalent to having one keyframe
per frame. This does not integrate well with the artists’ workflow.

3 APPROACH

3.1 Background and Problem Formulation

Fig. 3. Left: Our generic abstraction of character controls. It represents the
structure that the artist is animating, which could be of any type: Skeleton
(middle), rig controls (right) or others.

Our system starts with any rig structure. Some examples are
graphs of controls for rotation and translation, more complex rigs
with advanced controls, or a skeletal structure with joints (Fig. 3).
From there, the user can directly start animating either with tradi-
tional tools, or with our system.

Once some keyframes are set, themotion curves corresponding to
a point’s path in time can be visualized (Fig. 4, left) by clicking on
any point on the control structure. The motion curve also displays
orientations (middle) and spacing of frames, i.e. timing (right). The
trajectory, orientation and timing can all be altered by respectively
dragging, rotating or scaling the motion curve at a location corre-
sponding to the chosen point at a particular frame. In this paper,
we define state as the positional and orientational configuration
of a point at a specific time. Alterations specified by the user on a
point’s state are combined with further constraints, such as pinned
points (motion curves that the user does not want to be altered) and
contact points, in order to craft the resulting motion interactively.
Fig. 5 shows a step of an example editing process: The user sets the
right hand as contact, pins the trajectory of the hip, and manipulates
the trajectory of the left arm as represented with a motion curve.

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

101:4 • Ciccone, L. et al

Fig. 4. Motion curve representation that allows to edit the trajectory (left),
orientations (middle) and timing (right) during interpolations. The orange
spheres represent keyframes, i.e. points that will not be altered by the
modifications.

Although the manipulations and constraints described above give
the user enough degrees of freedom (DoF) and precise control, we
observed that it is often difficult to get character specific deforma-
tions as all the above controls are agnostic to the character being
animated. This is a common problem also in previous FK/IK based
systems. We thus propose to further impose character specific prop-
erties. Angle limits are set in order to forbid undesired configurations
(such as turning the elbow backward). Angle stiffness defines the
resistance of joints to rotations; for example, on a human character,
artists would usually set a lower stiffness on the shoulder than on
the clavicle because the latter is less involved in arms’ movements.

Fig. 5. Manipulation of the interpolation. The user edits the motion curve
of the left arm, while ensuring that the trajectory of the hip (red curve) and
the right hand (which is a contact) will not be altered.

As in most animation systems, we assume that each control in
the underlying rig structure is parameterized, and each parameter
is controlled by a different animation curve (Fig. 6). Although our
formulation supports arbitrary animation curves, we will assume
cubic Bezier curves, since they are heavily used in practice. Once
an artist defines keyposes, each parameter of each controller is thus
interpolated with a cubic Bezier curve that defines the motion. Using
traditional systems, if the resulting animation is not satisfactory,
editing the interpolated movement requires to manually edit the
tangents of every Bezier curve, a cumbersome process that requires
a lot of effort and time to get the desired animation.

Fig. 6. Illustration of the introduced variables.

We denote all tangents of all such animation curves with the
vector θθθ , and all animation curves with c(θθθ , t). At each editing step,
the user can click on a point on the control structure, and change the
parameters (position, orientation, and scale) at that point interac-
tively. We denote the state of this point with s(c(θθθ , t)), and the new
one interactively specified by the user with s′(t). The goal is then
to compute a new set of tangent values θθθ ′ in order to reach s′(t) (i.e.
we want s(c(θθθ ′, t)) = s′(t)) while satisfying other constraints, as we
will detail in the next section.

3.2 Tangent Space Optimization
As we would like to formulate the problem in terms of the tan-
gents θθθ , we first express all changes, and in particular ∆s(c(θθθ , t)) :=
s(c(θθθ ′, t)) − s(c(θθθ , t)) in terms of changes in the tangents. This can
be easily carried out by a first order approximation:

s(c(θθθ ′, t)) ≈ s(c(θθθ , t)) + Js (c(θθθ , t))(θθθ ′ − θθθ)

∆s(c(θθθ , t)) ≈ Js (c(θθθ , t))∆θθθ ,
(1)

where Js is the Jacobian matrix that stacks the derivatives of s
with respect to the tangents θθθ . This is the starting point of most IK
formulations, and in our case a well justified approximation as the
user will incrementally alter the motion curves. The Jacobian can
be further factorized into

Js (c(θθθ , t)) =
δs(c(θθθ , t))
δc(θθθ , t)

δc(θθθ , t)
δθθθ

. (2)

This form of Js is useful as the first term on the right hand side
is typically simple. Denoting the ith component of c with ci , and
the position and orientation of s with sP and sO respectively, if
ci defines a translation, δ sPδci

= v and δ sO
δci
= 0, or if ci defines a

rotation, δ sP
δci
= v × (sP − r) and δ sO

δci
= v, where v is the unit

vector pointing along the translation or rotation axis, and r is the
rotation center. The second term in the Jacobian factorization is
more involved, and often not possible to get analytically. We thus
approximate it with finite differences.

For simplicity, we will drop c and simply write s(θθθ , t) and Js (θθθ , t)
for the rest of this section.

Energy terms. Given this linear approximation, we can now define
three important quadratic energies. The first one aims at making
the solution s(θθθ ′, t) stay as close as possible to the target s′(t) inter-
actively provided by the user on the motion curve (as in Fig. 5):

Em =
∆sss ′(t) − Js (θθθ , t)∆θθθ

2 , (3)

where ∆sss ′(t) = sss ′(t) − sss(θθθ , t). Next, to avoid abrupt deformations
when manipulating a trajectory, we add an energy term to minimize

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

Tangent-Space Optimization for Interactive Animation Control • 101:5

the changes in tangents:

Ed = ∥D∆θθθ ∥2 . (4)

Here, D is a diagonal matrix that stores stiffness parameters per
tangent component, as defined in section 3.1. Finally, the user can
break some tangents, meaning that the animation curve for certain
parameters can consist of multiple segments of Bezier curves that
are not C1. For such cases, we add an energy term that forces the
tangents at consecutive segments to stay close in order to have an
as smooth as possible curve:

Eb =
T+θθθ − T−θθθ

2 , (5)

where the matrices T+ and T− select tangent pairs corresponding
to the same keyframe of the same curve, but on different Bezier
segments.

Pins and Contact Constraints. In addition to the interactively mod-
ifiedmotion curves, the user can specify pins and contact constraints
on the structure. This is important to achieve and interpolate the
poses as desired. The pinned points’ trajectories and orientations —
i.e. their state denoted by sj (θθθ , t)— should not be altered by the mod-
ifications on θθθ . Therefore, we have the desired states s′j (t) = sj (θθθ , t),
at all times t . We sample the time into a set of frames, which gives us
a constrained state per pin and per frame, that we stack into the vec-
tor ρρρ(θθθ). The target states for these points are similarly stacked into
ρρρ ′. We thus require that ρρρ ′ = ρρρ(θθθ). We elaborate on the sampling of
time in section 3.3.

Other points can be set as contact between two keyframes tk and
tk+1, e.g. feet on the floor. This means that those points should not
move between the two specified keyframes. Specifically, we have
sj (θθθ , tk) = sj (θθθ , tk+1), and want s′j (t) = sj (θθθ , tk), ∀t ∈ [tk , tk+1].
Once again, we sample the time between tk and tk+1 and append
the set of constrained states sj (θθθ , t) to the vector ρρρ(θθθ), and the set
of corresponding desired states s′j (t) to ρρρ

′.
Finally, the state of the manipulated point can also be constrained

at some specific time frames by selecting them directly on themotion
curve. Similar to pins, at those times tl we have s′(tl) = s(θθθ , tl). We
also append those constrained and desired states to ρρρ(θθθ) and ρρρ ′.

All the aforementioned pins, contacts, and state constraints then
define hard constraints in our optimization problem. Noting that
ρρρ ′ = ρρρ(θθθ ′) for some θθθ ′, we can use the linear approximation given
in Equation 1 to get

∆ρρρ ′ − Jρρρ (θθθ)∆θθθ = 0, (6)

where ∆ρρρ ′ = ρρρ ′ − ρρρ(θθθ), and ∆θθθ = θθθ ′ − θθθ , as before.

Variables limits. Let us define θθθ i,k as the tangent for parameter ci
at keyframe tk . If the tangent is broken, we respectively call θθθ i,k−

and θθθ i,k+ the tangents corresponding to the Bezier segments before
and after tk . Each of these tangents is composed of two components

θθθ i,k =

(
θXi,k
θYi,k

)
. The X component (horizontal expansion of tangent

in Fig. 6) determines the timing of the interpolation. In order to
ensure that the spline interpolation is injective, i.e. at each time t

there is only one value of ci (t), we limit this component to:

0 ≤ θXi,k+ ≤ (tk+1 − tk)

0 ≤ θXi,k− ≤ (tk − tk−1) .
(7)

The Y component (vertical expansion) determines the range of val-
ues that ci (t) takes. In order to limit it within the range ui to vi , we
have to restrict the Y component of the tangents. This is important
especially when ci (t) represents joint angles (see angle limits as
defined in section 3.1). We can then impose the following limits on
the tangents:

ϕ(ui ,k
+) ≤ θYi,k+ ≤ ψ (vi ,k

+)

−ψ (vi ,k
−) ≤ θYi,k− ≤ −ϕ(ui ,k

−).
(8)

Depending on the type of interpolation, the functions ϕ andψ can
have complex expressions, or even have no closed form. It is the
case for Bezier interpolations, for which we propose the following
approximation:

ϕ(ui ,k
±) =

4
3

(
ui −min

(
ci (tk), ci (tk±1)

))
ψ (vi ,k

±) =
4
3

(
vi −max

(
ci (tk), ci (tk±1)

))
.

(9)

We demonstrate in Appendix A that this approximation satisfies the
limits ui and vi for ci (t) at all times.

Quadratic problem formulation. Given the energies, constraints
and limits defined above, we finally obtain the following minimiza-
tion problem:

min
∆θθθ

wm · Em +wd · Ed +wb · Eb

subject to ∆ρρρ ′ − Jρρρ (θθθ)∆θθθ = 0

0 ≤ θXi,k+ ≤ (tk+1 − tk)

0 ≤ θXi,k− ≤ (tk − tk−1)

ϕ(ui ,k
+) ≤ θYi,k+ ≤ ψ (vi ,k

+)

−ψ (vi ,k
−) ≤ θYi,k− ≤ −ϕ(ui ,k

−)

,∀i,∀k .
(10)

This is a quadratic programming problem that we solve using the
Mosek solver [Mosek 2010] with default parameters. In our imple-
mentation, we chose wm = 100.0, wd = 1.0 and wb = 1.0 — here,
the high value of wm reflects the prevailing importance given to
satisfying the user manipulations.

3.3 Implementation Details
Tangents reduction. We can drastically reduce the size of the op-

timization by realizing that it is not required to optimize for the
entire set of tangents θθθ . Indeed, many tangent modifications will
not affect the state of the manipulated point or of the constrained
ones (pins and contacts), so they do not need to be considered. We
denote Cs the set of all parameters that affect the state s of the
manipulated point, and Csj the equivalent set for the state sj of each
constrained point. With hierarchical structures such as skeletons,
those sets correspond to the parameters of the point’s parent chain.
We further denote the set of parameters whose tangents are actually
optimized in Equation 10 with C.

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

101:6 • Ciccone, L. et al

We begin by setting C = Cs . Then, for each constrained point, we
identify three cases: (1) if C ∩Csj = �, we ignore the constraint and
remove it from the vector ρρρ because no modification on s will affect
sj ; (2) if Csj ⊂ Cs , we remove the constraint from ρρρ and reduce
the set C := C \ Csj ; (3) otherwise, we keep the constraint and
augment the set C := C ∪ Csj . Finally, if a point in the time range
t ∈ [tk , tk+1] is manipulated, only the tangents corresponding to
that time range need to be modified. In conclusion, the tangents
that we optimize for in Equation 10 are:(

θθθ i,k+ ,θθθ i,k+1−
)
, ∀i ∈ C.

For the example in Fig. 5 where the left arm is manipulated while
the hip and hand are pinned, our solver optimizes for 60 tangents,
while the total number of tangents present in this scene, supposing
that the entire animation contains only 3 keyframes, is 556. This
optimization allows to achieve a real-time interaction, as presented
in Section 4.5.

Time sampling. Pinning or setting contact points sj means im-
posing a constraint over a whole time period [tk , tk+1]. To do so,
we sample the time. The set of samples is at most at every frame
of the animation between tk and tk+1, but we can reduce its size
in case tk+1 − tk is large or Csj is small. Indeed, there is a limited
number of DoF in the spline animation curves that define the state
sj , therefore we only need to sample the time range that number of
times, which is: 4 × size(Csj).

Optimization and overconstrained cases. Most of the time, since
the manipulations are incremental, one single iteration of the opti-
mization is sufficient to satisfy the constraints. However sometimes
it might not be enough, in which case we update the state and
Jacobian values and run the optimization again — this happens
if s′(t) is far from s(θθθ , t) and the linear approximation of Equa-
tion 1 is not accurate anymore. Our stopping criteria is that the
manipulated point’s state is close enough to the user given state, i.e.
∥sss(θθθ + ∆θθθ , t) − sss ′(t)∥ < κ.
If after several iterations (we used 5) the solution is not improved

— i.e. the curve does not move closer to the user-specified point —
we reject it and stay at the current configuration. This can happen
when the problem is overconstrained, i.e. the set of constraints
(pins, contacts and manipulated point) are unreachable given the
set of DoF (tangents); an example of such a case is presented Fig. 7.
When the user comes back to a reachable solution, the state is
updated, which provides direct feedback about the feasibility of the
manipulations.

Solver stability. In order to improve the stability of the quadratic
programming solver, we allowed a threshold on the hard constraint
corresponding to pins and contacts in Equation 6. It becomes:

− ϵϵϵ ≤ ∆ρρρ ′ − Jρρρ (θθθ)∆θθθ ≤ ϵϵϵ, (11)

where ϵϵϵ is a vector of ϵ values that affect the extent on which
constrained points will be able to move around their desired state
ρρρ ′. It can be chosen depending on the scale of the scene in order for
the error to stay barely visible to the user. We used ϵ = 10−4.

The optimization problem being quadratic, we can rewrite Equa-
tion 10 in the form 1

2∆θθθ
T ·QQQ · ∆θθθ +bbbT · ∆θθθ + c . Jittery solutions can

Fig. 7. Example of an infeasible manipulation. Here, the stomach is pinned
and the wrist is set as contact, which does not leave enough DoF to move
the shoulder as specified. The system thus stays at the previous state.

be obtained ifQQQ is not full rank. We avoid such cases by regularizing
QQQ withQQQ :=QQQ + λIII , with λ = 10−6.

3.4 Timing Manipulations
Another important aspect to consider when manipulating interpo-
lations is the timing. The extent of tangents in the X direction, θXi,k ,
influences the ease-in and ease-out of interpolations. We propose to
let the user edit this easing directly on the motion curve, by scaling
the timing up or down at any point (see Fig. 4, right). Scaling up
means moving the frames apart around that point, i.e. making the
motion faster, and scaling down means bringing the frames closer
around that point, i.e. making the motion slower. If the user is scal-
ing at time t ∈ [tk , tk+1] by a factor σ , we modify the tangents as
follows:

θXi,k+ := θ
X
i,k+ + σ

t − tk
tk+1 − tk

θXi,k+1− := θXi,k+1− + σ
tk+1 − t

tk+1 − tk
,

(12)

while still limiting the values to stay between 0 and (tk+1 − tk) in
order to keep an injective function.

3.5 Static Case
It is interesting to notice that the systemwe introduce for the control
of interpolations can be reduced to a posing system, similar to what
we find in the literature [Shi et al. 2007; Yamane and Nakamura
2003], if we remove time from the equations. Indeed, c(θθθ , t) simply
becomes c, meaning that we directly optimize for attributes’ values
instead of tangents. The minimization problem of Equation 10 then
becomes:

min
∆c

wm · ∥∆sss − Js (c)∆c∥2 +wd · ∥D∆c∥2

subject to
Jρρρ (θθθ)∆θθθ2 = 0
ui ≤ ci ≤ vi , ∀i,

(13)

where ρρρ is the vector of pinned (i.e. fixed) points and the Jacobian
Js (c) is given by:

Js (c) =
δs(c)
δc
. (14)

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

Tangent-Space Optimization for Interactive Animation Control • 101:7

Fig. 8. The user is manipulating the character’s left arm for a static pose.
The feet and right hand are pinned, ensuring that they do not move during
manipulations.

The obtained system provides similar interaction abilities as our
interpolation control, alwayswith angle limits and stiffnesses (Fig. 8).
This shows that our problem formulation can be generalized to
cover a wide range of the animation pipeline, and that it completely
removes the need for fixed IK chains in the rig. It is the system we
use in Section 4 to design the keyposes of our results.

4 EVALUATION

4.1 Examples of Authoring Difficult Animations
We implemented our system as an Autodesk Maya [Autodesk 2018]
plugin. To demonstrate its potential, we let two artists design several
animations for different types of characters. While our method
is designed to work in harmony with traditional tools — such as
rigs and graph editors — these animations were entirely authored
using our system, from the design of key poses to the editing of
interpolations. Please refer to the accompanying video to see the
final animations, as well as some steps of the creation process and a
comparison between the default and edited interpolations.

Fig. 9. Results on a human character. Left: Playing guitar animation, which
necessitates specific contacts on fingers. Right: Diving animation, requiring
foot contacts and a believable falling trajectory.

Complex interactions of hands with objects, such as playing the
guitar, are some of the most difficult animations to create due to fin-
gers’ particular gestures and contacts. Animating this case typically
involves IK chains on the fingers, which drastically slows down the
rig evaluation, further hindering the creation process. In contrast,

creation becomes very natural using our system, as one can pin some
fingers, and freely move any other part of the character. Contacts
can be specified for certain time ranges to ensure that the fingers
won’t move during interpolation while a note is being played. The
animation presented in Fig. 9-left and in the accompanying video
was created using our system without requiring any IK chain.

In a similar vein, the diving animation shown in Fig. 1 and Fig. 9-
right necessitates contacts between the feet and the ground, which
are easily handled with our system. Additionally, the interpolation
for the jump requires a particular trajectory, with careful orientation
and timing control, in order to achieve a realistic falling movement.
Our system allows for a natural interaction with direct trajectory
control for this case.

Fig. 10. Results on non-human characters. Top: Walking animation of a
spider robot, generated using only the shown two key poses. Bottom: Punch-
ing animation of a dinosaur, who switches his contact component with the
ground from the feet to the tail.

Our system is not limited to human models. In Fig. 10, we show
results with a spider robot and a dinosaur. The spider animation is a
walk cycle that was created using only two key poses, demonstrat-
ing the effectiveness of the ability to control interpolations with
tangents. The dinosaur punching animation is another example
where the control of timing plays an important role. Furthermore,
near the end of the animation, the dinosaur is standing on a part
of his tail. Handling this contact with traditional tools would be a
challenging task, especially since a classic rig would most likely not
contain any IK chain with an end effector at the middle of the tail.
These issues are effortlessly solved using our system.

4.2 User study: Simpler Curves for Complex Motions
One objective of our system is to help animators work with clean an-
imation curves with the least amount of keyframes, making further
editing as easy and fast as possible. As the animations are typically
refined and altered many times in production, this is crucial for an
effective workflow. To evaluate this aspect on complex animations,

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

101:8 • Ciccone, L. et al

we asked the same two professional artists, who have a long experi-
ence using Autodesk Maya, to animate their scenes from Fig. 9 and
Fig. 10 using traditional tools. For each animation, we counted the
number of keyframes used, which are listed in Table 1.

Table 1. For each animation, we compare the number of used keyframes
(for the most keyframed control) when animating with a traditional system,
and with ours. We also compare the speed of rig evaluation in fps.

Animation Num keyframes Framerate
Traditional Ours Traditional Ours

Human Guitar 37 13 20.0 32.8Human Dive 24 10
Spider Walk 4 2 44.9 82.1
Dino Punch 19 12 36.9 47.7

The number of keyframes naturally depends on the animation
style, but for all cases we can clearly see that our system allows to
animate using fewer keyframes (on average, 2.2 times less). More-
over, since with traditional tools artists require IK chains, the rig
evaluation is considerably slowed down, further hindering interac-
tion. In Table 1, we show that since our system does not require IK
chains, the speed of the playback is on average 60% faster.

4.3 User study: Faster Editing Process

Fig. 11. 16 users were asked to edit a robot flying animation (left) in order
to avoid obstacles (right), first using traditional tools on Maya and then
using our plugin.

To evaluate the effectiveness and accessibility of our system, we
conducted a further user study, similar to the ones in previous works
by Guay et al. [2015] and Ciccone et al. [2017]. We invited twenty
people unexperienced with 3D animation who were presented with
a simple robot flying animation composed of only 4 keyframes,
where the character is hitting obstacles during interpolations. The
objective of the exercise was to modify the animation in order to
avoid those obstacles (see Fig. 11). Using Maya, they were free to
use FK or IK, add keyframes, or edit the curves of interpolations in
the graph editor. Using our tool, they only edited the motion curves
in the viewport.

Each user received a ten-minute introduction to each system. For
counterbalancing, half of the participants had to start using Maya
while the other half started with our tool. We measured the time,
number of clicks, and keyframes to produce the final animations.
Furthermore, each user was asked to self-evaluate the quality of
his/her results on a scale from 0 to 5. Table 2 presents the mean and

standard deviation of the obtained results. Examples of resulting
animations are shown in the accompanying video.

Table 2. For each participant who edited the flying robot animation using
Maya and our system, we measured the required time, number of clicks,
number of keyframes, and self-evaluation score. This table shows the mean
and standard deviation values.

Time Clicks Keyframes Score

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

Maya 10m13s 5m19s 209.6 83.7 11.4 2.8 2.4 0.8

Ours 7m06s 1m58s 140.7 39.9 4.0 0.0 4.1 0.6

We observe that participants were able to edit the animation
more effectively with our system than with traditional tools. This
demonstrates the accessibility of our system. On average, both the
time and number of clicks were reduced by more than 30% using our
system. We also notice that this efficiency does not come at the cost
of poorer animations. Indeed, our approach received significantly
higher self-evaluation scores in all cases. This is partially due to
the reduced number of keyframes, which yields a smoother motion.
Note that only one user attempted to edit the curves of interpolation
in Maya’s graph editor, a choice he eventually regretted. We believe
that with additional experience with our tool, these gains will be
further increased.

4.4 Qualitative Assessment from Professional Animators
We further conducted a survey and gathered observations on our
system from three professional animators, along the lines of Koyama
and Goto’s evaluation [2018]. Each of them had the chance to try the
tool before answering our questions. First, we asked what are the
main shortcomings of the traditional animation process according
to them. Then, we asked how our system responds to that, what are
its benefits and drawbacks, and how they would further improve the
tool. Finally, we asked if they would imagine such a system being
integrated into their production tools. The obtained comments are
summarized below and sorted by category.

Shortcomings of traditional animation. According to all three
artists, the predominant difficulty with animation comes from the
number of parameters. Each production character possesses hun-
dreds of rig controls and, due to the unpredictability of interpo-
lations, most of those controls are keyed every few frames. That
represents a lot of values to specify through a very granular in-
teraction. It makes the motion tedious to define, and even more
cumbersome to refine later.

Benefits of our method. Artists were impressed by the flexibil-
ity that our system provides thanks to the pin-and-drag approach,
yielding a very dynamic interaction. This approach allows not only
reducing the number of keyframes, but also eliminating several
controls and simplifying the architecture of the rig. As a result, ani-
mations require fewer parameters overall, which can be edited in a
coordinated fashion through the simple manipulation of space-time
curves. One animator even pointed out that being able to apply
the tool directly on the skeleton could save a lot of rigging time
and would be especially useful for secondary characters. Finally,

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

Tangent-Space Optimization for Interactive Animation Control • 101:9

all three animators appreciated the intuitiveness of the tool, which
they found easy to learn and easy to use.

Drawbacks of our method. The main reservation of the intervie-
wees was about working with global keyposes — i.e. assuming that
all elements are keyed at the same frames — as they are used to
working with different keyframes for different parts of a character.
Also, it was sometimes frustrating for them to encounter infeasi-
ble states; they admitted that automatically adding keyframes to
increase the DoF would be undesirable, but they could not agree on
a preferable solution.

Integrability into production. All three animators expressed a clear
desire to see such a system available in their workflow. One of
them mentioned that the current state of the tool would already be
particularly useful for quickly crafting motions in the early phase
of production, and for animating secondary characters that require
less granularity.

Other comments. One of the interviewees concluded with the fol-
lowing words: “Similar to the way ZBrush revolutionized modeling,
animation will soon need its own revolution. And I could totally see
a system like yours being part of it.”

Speed gain after a longer experience. One of the animators was
particularly involved in the development of this project, and we
could see that he was continuously getting faster in using it. To
evaluate that gain, we asked him to perform the same task as the
user study of Section 4.3. As a result, he was almost 3 times faster
using our system than with the Maya tools he is trained on.

4.5 System Performance
We tested the performance of our approach on a machine with an
Intel Core i7-4930K CPU and 32GB of RAM (we do not specify the
graphics card since we do not use any GPU optimization, neither
does the optimization library we use in our system [Mosek 2010]).
Table 3 shows the computing times required to obtain the tangent
values from user input, depending on the number of DoF (i.e. tan-
gents), the length of the interpolation (i.e. spacing between two
keyframes), and constraint configuration (number of pins and con-
tacts, lower or upper in the hierarchy of character controls). Note
that our system does not depend on the total length of the animation
since we only consider a section of it during our optimization (as
discussed in Section 3.3).

Given that artists rarely space their key poses by more than a few
frames, and that most configurations do not exceed 100 degrees of
freedom, we observe high enough frame rates for fluid interactions
for typical animations in all cases. Some latency can be observed
when a very large number of tangents are involved over a long inter-
polation. Even for such rare cases, we can maintain an interaction
speed feasible for editing. Currently, creating the matrices of the
QP problem — i.e. computing the Jacobians — represents on average
20% of the computing time in our tests, and this number goes up
to 38% when a large number of DoFs and constraints are involved.
Therefore, using a GPU optimization to parallelize the computation
of all derivatives (from Equation 2) can significantly speed up the
overall computation.

Table 3. Each table presents the time, in milliseconds, required for opti-
mizing tangents to satisfy user manipulations, under different constraint
configurations, as illustrated on their right. The values depend on the num-
ber of dof (i.e. 2× number of tangents) and the length of the interpolation.
Each exposed value is the median over more than a hundred tests.

Degrees of freedom
24 72 120 168

Fr
am

es 2 10 12 16 21
7 10 13 16 21

20 10 12 16 20

Degrees of freedom
24 72 120 168

Fr
am

es 2 52 57 69 86
7 58 80 94 130

20 67 106 158 227

Degrees of freedom
24 72 120 168

Fr
am

es 2 53 59 63 68
7 63 80 91 113

20 65 103 144 187

Degrees of freedom
24 72 120 168

Fr
am

es 2 52 54 57 63
7 59 68 81 101

20 63 103 144 200

Degrees of freedom
24 72 120 168

Fr
am

es 2 55 57 59 64
7 60 67 77 92

20 60 99 137 167

Degrees of freedom
24 72 120 168

Fr
am

es 2 56 59 61 66
7 61 76 89 99

20 63 101 162 191

Hi
er

ar
ch

y
Hi

er
ar

ch
y

Hi
er

ar
ch

y

Hi
er

ar
ch

y
Hi

er
ar

ch
y

Hi
er

ar
ch

y

5 LIMITATIONS AND FUTURE WORK
It is possible that there is no solution for tangents in Equation 10
that would satisfy the user manipulations, especially if there are
numerous contacts and pins specified. This means that there is
no configuration of Bezier interpolations on joints’ rotations that
result in a certain trajectory for the end effector, while satisfying the
constraints. For these cases, what we currently have is similar to that
of IK systems: The optimization gives the closest possible solution. A
possible alternative is enforcing the creation of additional keyframes.
We leave such mixed optimization of parameters and keyframes as
future work.

In this work, we assumed that animators use global keyposes. For
certain animations, it might be more convenient to use different
keyframes for different parts of a character. Computationally, this
can be achieved by using different keyframes for different attributes
when optimizing tangents in Equation 10 (i.e. attribute-dependent tk
values). However, the interaction might suffer from the inability to
visualize clear segments of motion, and therefore yield unexpected
behavior when editing. We plan to develop alternative visualization
strategies for these cases.
We have worked with connected structures such as skeletons

and body rig controls. But some structures, such as blendshape de-
formers on a facial rig, consist of a set of independent handles. Our
system naturally extends to such cases, with a simplified optimiza-
tion as only the tangents of that handle’s attributes would need to
be optimized. Visualization of motion curves would again be the
main challenge for these cases.

6 CONCLUSION
We proposed a new optimization-based keyframed animation sys-
tem. Formulating common constraints and user interactions as an
optimization problem in the tangent space of animation curves al-
lowed us to handle the problem with fast quadratic programming

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

101:10 • Ciccone, L. et al

based solvers. The result is an efficient real-time system that ab-
stracts away the difficult choice of FK/IK from the user, without
adding keyframes or complicating animation curves. These prop-
erties make the proposed system practical and easy to incorporate
into existing animation processes. We believe that with its stable
and fast implementation, our system is an important addition to the
current animation tools.

ACKNOWLEDGMENTS
This project has received funding from the European
Union’s Horizon 2020 research and innovation program

under the Marie Sklodowska-Curie grant agreement No 642841. We
would like to thank all the participants of our user studies for their
time and fruitful discussions, and in particular professional artists
for their help and useful inputs during the whole project.

REFERENCES
Andreas Aristidou, Joan Lasenby, Yiorgos Chrysanthou, and Ariel Shamir. 2018. Inverse

Kinematics Techniques in Computer Graphics: A Survey. Computer Graphics Forum
37, 6 (2018), 35–58.

Autodesk. 2018. Maya.
Jinxiang Chai and Jessica K. Hodgins. 2007. Constraint-based Motion Optimization

Using a Statistical Dynamic Model. ACM Trans. Graph. 26, 3 (2007).
Byungkuk Choi, Roger B. i Ribera, J. P. Lewis, Yeongho Seol, Seokpyo Hong, Haegwang

Eom, Sunjin Jung, and Junyong Noh. 2016. SketchiMo: Sketch-based Motion Editing
for Articulated Characters. ACM Trans. Graph. 35, 4 (2016), 146:1–146:12.

Myung G. Choi and Kang H. Lee. 2016. Points-based user interface for character posing.
Computer Animation and Virtual Worlds 27, 3-4 (2016), 213–220.

Loïc Ciccone, Martin Guay, Maurizio Nitti, and Robert W. Sumner. 2017. Authoring
Motion Cycles. In Proceedings of the 16th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 8:1–8:9.

Michael F. Cohen. 1992. Interactive Spacetime Control for Animation. In Proceedings
of the 19th Annual Conference on Computer Graphics and Interactive Techniques.
293–302.

Oliver Glauser, Wan-Chun Ma, Daniele Panozzo, Alec Jacobson, Otmar Hilliges, and
Olga Sorkine-Hornung. 2016. Rig Animation with a Tangible and Modular Input
Device. ACM Trans. Graph. 35, 4 (2016), 144:1–144:11.

Michael Gleicher. 1997. Motion Editing with Spacetime Constraints. In Proceedings of
the 1997 Symposium on Interactive 3D Graphics. 139–ff.

Michael Gleicher and Andrew P. Witkin. 1991. Differential Manipulation. In Proceedings
of Graphics Interface.

Martin Guay, Marie-Paule Cani, and Rémi Ronfard. 2013. The Line of Action: An
Intuitive Interface for Expressive Character Posing. ACM Trans. Graph. 32, 6 (2013),
205:1–205:8.

Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-Paule Cani. 2015. Space-time
Sketching of Character Animation. ACM Trans. Graph. 34, 4 (2015), 118:1–118:10.

Fabian Hahn, Frederik Mutzel, Stelian Coros, Bernhard Thomaszewski, Maurizio Nitti,
Markus Gross, and Robert W. Sumner. 2015. Sketch Abstractions for Character
Posing. In Proc. of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 185–191.

Félix G. Harvey and Christopher Pal. 2018. Recurrent Transition Networks for Character
Locomotion. In SIGGRAPH Asia 2018 Technical Briefs. 4:1–4:4.

Ollie Johnston and Frank Thomas. 1981. The illusion of life: Disney animation. Disney
Editions New York.

Yuki Koyama and Masataka Goto. 2018. OptiMo: Optimization-Guided Motion Editing
for Keyframe Character Animation. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 161:1–161:12.

Mikko Kytö, Krupakar Dhinakaran, Aki Martikainen, and Perttu Hämäläinen. 2017.
Improving 3D Character Posing with a Gestural Interface. IEEE Computer Graphics
and Applications 37, 1 (2017), 70–78.

AndreasM. Lehrmann, Peter V. Gehler, and SebastianNowozin. 2014. Efficient Nonlinear
Markov Models for Human Motion. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition. 1314–1321.

Jianyuan Min, Yen-Lin Chen, and Jinxiang Chai. 2009. Interactive Generation of Human
Animation with Deformable Motion Models. ACM Trans. Graph. 29, 1 (2009), 9:1–
9:12.

APS Mosek. 2010. The MOSEK optimization software. Online at http://www. mosek.
com 54, 2-1 (2010).

Jean-Christophe Nebel. 1999. Keyframe interpolation with self-collision avoidance. In
Computer Animation and Simulation ’99. 77–86.

A. Cengiz Öztireli, Ilya Baran, Tiberiu Popa, Boris Dalstein, Robert W. Sumner, and
Markus Gross. 2013. Differential Blending for Expressive Sketch-based Posing. In
Proc. of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
155–164.

Charles Rose, Brian Guenter, Bobby Bodenheimer, and Michael F. Cohen. 1996. Efficient
Generation of Motion Transitions Using Spacetime Constraints. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques. 147–154.

Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining Guo.
2007. Mesh Puppetry: Cascading Optimization of Mesh Deformation with Inverse
Kinematics. ACM Trans. Graph. 26, 3 (2007), 81–89.

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2008. Gaussian Process Dynamical
Models for Human Motion. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30, 2 (2008), 283–298.

Xiaolin Wei and Jinxiang Chai. 2011. Intuitive Interactive Human-Character Posing
with Millions of Example Poses. IEEE Computer Graphics and Applications 31, 4
(2011), 78–88.

Harold Whitaker and John Halas. 2013. Timing for animation. CRC Press.
Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. In Proceedings of the

15th Annual Conference on Computer Graphics and Interactive Techniques. 159–168.
Katsu Yamane and Yoshihiko Nakamura. 2003. Natural Motion Animation through

Constraining and Deconstraining at Will. IEEE Transactions on Visualization and
Computer Graphics 9, 3 (2003), 352–360.

Wataru Yoshizaki, Yuta Sugiura, Albert C. Chiou, Sunao Hashimoto, Masahiko Inami,
Takeo Igarashi, Yoshiaki Akazawa, Katsuaki Kawachi, Satoshi Kagami, and Masaaki
Mochimaru. 2011. An Actuated Physical Puppet As an Input Device for Controlling
a Digital Manikin. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 637–646.

Xinyi Zhang andMichiel van de Panne. 2018. Data-driven Autocompletion for Keyframe
Animation. In MIG’18: Motion, Interaction and Games (MIG 2018). 1–11.

A APPENDIX: ATTRIBUTES LIMITS
In this appendix, we demonstrate that if a parameter c is constrained
to stay between u and v , the limits on the tangents we defined in
Equations 8 and 9 satisfy the parameter’s constraints at all times.
Between two keyframes tk and tk+1, we consider that the value of
c(θθθ , t) is interpolated by a Bezier cubic spline:

[
t

c(θθθ , t)

]
=

[
BXc (λ)

BYc (λ)

]
=

[
tk

c(tk)

]
(2λ3 − 3λ2 + 1) + 3λ(1 − λ)2θθθk+

+

[
tk+1

c(tk+1)

]
(3λ2 − 2λ3) − 3λ2(1 − λ)θθθk+1− ,

where λ ∈ [0, 1]. Therefore, imposing c(θθθ , t) ≤ v ∀t ∈ [tk , tk+1]
is equivalent to imposing BYc (λ) ≤ v ∀λ ∈ [0, 1]. By injecting the
upper limits of Equation 8 into BYc (λ), with the definitions of ϕ and
ψ proposed in Equation 9, we obtain the following inequality, where
we notemx =max(c(tk), c(tk+1)) for easier reading:

BYc (λ) ≤
c(tk)(2λ3 − 3λ2 + 1) + 4(v −mx)λ(1 − λ)2

+ c(tk+1)(3λ2 − 2λ3) + 4(v −mx)λ2(1 − λ).

Knowing that both (2λ3 − 3λ2 + 1) and (3λ2 − 2λ3) are positive for
λ ∈ [0, 1], and by definition both c(tk) and c(tk+1) are lower than
mx , we obtain:

BYc,i (λ) ≤ 4(v −mx)λ(1 − λ) +mx .

Finally, since λ(1 − λ) ≤ 0.25 on [0, 1] and v −mx is positive (we
suppose that the limit is respected at keyframes), we end up with
the desired result: BYc,i (λ) ≤ v .

The same demonstration is valid for the lower limit. Indeed, if u
is the lower limit of c , that means that −u is the upper limit of −c ,
which brings us back to the above computation.

ACM Trans. Graph., Vol. 38, No. 4, Article 101. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Background and Problem Formulation
	3.2 Tangent Space Optimization
	3.3 Implementation Details
	3.4 Timing Manipulations
	3.5 Static Case

	4 Evaluation
	4.1 Examples of Authoring Difficult Animations
	4.2 User study: Simpler Curves for Complex Motions
	4.3 User study: Faster Editing Process
	4.4 Qualitative Assessment from Professional Animators
	4.5 System Performance

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References
	A Appendix: Attributes limits

