# PhaseNet for Video Frame Interpolation Supplementary Material

Simone Meyer<sup>1,2</sup> Abdelaziz Djelouah<sup>2</sup> Brian McWilliams<sup>2</sup> Alexander Sorkine-Hornung<sup>2\*</sup> Markus Gross<sup>1,2</sup> Christopher Schroers<sup>2</sup>

<sup>1</sup>Department of Computer Science, ETH Zurich <sup>2</sup>Disney Research

simone.meyer@inf.ethz.ch aziz.djelouah@disneyresearch.com

### **1. Error Measurements**

In Table 1 we report the peak signal-to-noise ration (PSNR) in addition to the SSIM error reported in the main paper. Example input images from the sequences used to compute these error measurements are shown in Figure 1.

#### 2. Details Network Architecture

The architecture of the PhaseNet consists of consecutive PhaseNet blocks. Figure 4 in the paper visualizes the concept of such a block. In Table 2 the specific details for each layer can be found. Each block consists of two convolution layers both followed by batch normalization and leaky ReLU nonlinearity with factor 0.2. The prediction layers pred\_*i* consists of one convolution layer followed by the hyperbolic tangent function. pyr\_*i* summarizes the steerable pyramid decomposition information of the input images at the corresponding level *i*, i.e. low level residuals for i = 0 and phase and amplitude information for i > 0. To increase

|         | MDP-Flow2 | Brox et al. | SepConv | Phase | Ours  |
|---------|-----------|-------------|---------|-------|-------|
| Barrier | 42.33     | 42.67       | 40.97   | 39.93 | 35.17 |
| Couple  | 41.02     | 40.97       | 41.26   | 40.26 | 38.25 |
| Face    | 40.94     | 40.89       | 40.60   | 40.28 | 40.31 |
| Hair    | 37.15     | 37.69       | 37.00   | 36.86 | 36.34 |
| Handk.  | 42.32     | 42.43       | 38.26   | 41.74 | 38.68 |
| Sand    | 37.43     | 37.48       | 36.93   | 37.17 | 36.67 |
| Roto    | 35.39     | 35.54       | 35.88   | 33.73 | 25.50 |
| Firemen | 40.26     | 40.21       | 42.54   | 33.80 | 34.78 |
| Light   | 45.82     | 45.63       | 45.50   | 45.63 | 45.33 |

Table 1: **Error measurements** of different methods for the different sequences shown in Figure 1 by computing the PSNR (higher is better).

the resolution of the feature maps we use bilinear upscaling noted as up() in Table 2. Due to reusing the weights across the color channels and some of the layers, our network has only about 460k trainable parameters in total.

#### 3. Details Model Training

Our training dataset consists of about 10k triplets of frames from the DAVIS video dataset [3, 2]. At each iteration we randomly select patches of  $256 \times 256$  pixels. We perform data augmentation through horizontal and vertical flipping of the patches.

We use Adam optimizer [1] with  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ and learning rate 0.001. The batch size used is 32 and reduced to 16 and 12, respectively, for the highest two training stages due to memory limitations. We train the lower levels for 12 epochs each and the highest two for 6 epochs due to the reduced batch size to have approximately the same number of iteration steps for each hierarchical level.

## References

- D. Kingma and J. Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- [2] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In *Computer Vision and Pattern Recognition*, 2016. 1
- [3] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-Hornung, and L. Van Gool. The 2017 davis challenge on video object segmentation. arXiv:1704.00675, 2017. 1

<sup>\*</sup>Alexander Sorkine-Hornung is now at Oculus. He contributed to this work during his time at Disney Research.



Figure 1: Example images from the sequences used for the error measurements.

| Name             | Input                                 | Kernel       | Ch In/Out        | Res              | Reuse Weights |
|------------------|---------------------------------------|--------------|------------------|------------------|---------------|
| PhaseNetBlock_0  | pyr_0                                 | $1 \times 1$ | 2/64             | $8 \times 8$     | False         |
| pred_0           | PhaseNetBlock_0                       | $1 \times 1$ | 64/1             | $8 \times 8$     | False         |
| PhaseNetBlock_1  | up(PhaseNetBlock_0)+up(pred_0)+pyr_1  | $1 \times 1$ | (64 + 1 + 16)/64 | $12 \times 12$   | False         |
| pred_1           | PhaseNetBlock_1                       | $1 \times 1$ | 64/8             | $12 \times 12$   | False         |
| PhaseNetBlock_2  | up(PhaseNetBlock_1)+up(pred_1)+pyr_2  | $1 \times 1$ | (64 + 8 + 16)/64 | $16 \times 16$   | False         |
| pred_2           | PhaseNetBlock_2                       | $1 \times 1$ | 64/8             | $16 \times 16$   | False         |
| PhaseNetBlock_3  | up(PhaseNetBlock_2)+up(pred_2)+pyr_3  | $3 \times 3$ | (64 + 8 + 16)/64 | $22 \times 22$   | False         |
| pred_3           | PhaseNetBlock_3                       | $1 \times 1$ | 64/8             | $22 \times 22$   | False         |
| PhaseNetBlock_4  | up(PhaseNetBlock_3)+up(pred_3)+pyr_4  | $3 \times 3$ | (64 + 8 + 16)/64 | $32 \times 32$   | False         |
| pred_4           | PhaseNetBlock_4                       | $1 \times 1$ | 64/8             | $32 \times 32$   | False         |
| PhaseNetBlock_5  | up(PhaseNetBlock_4)+up(pred_4)+pyr_5  | $3 \times 3$ | (64 + 8 + 16)/64 | $46 \times 46$   | False         |
| pred_5           | PhaseNetBlock_5                       | $1 \times 1$ | 64/8             | $46 \times 46$   | False         |
| PhaseNetBlock_6  | up(PhaseNetBlock_5)+up(pred_5)+pyr_6  | $3 \times 3$ | (64 + 8 + 16)/64 | $64 \times 64$   | False         |
| pred_6           | PhaseNetBlock_6                       | $1 \times 1$ | 64/8             | $64 \times 64$   | False         |
| PhaseNetBlock_7  | up(PhaseNetBlock_6)+up(pred_6)+pyr_7  | $3 \times 3$ | (64 + 8 + 16)/64 | $90 \times 90$   | False         |
| pred_7           | PhaseNetBlock_7                       | $1 \times 1$ | 64/8             | $90 \times 90$   | False         |
| PhaseNetBlock_8  | up(PhaseNetBlock_7)+up(pred_7)+pyr_8  | $3 \times 3$ | (64 + 8 + 16)/64 | $128 \times 128$ | True          |
| pred_8           | PhaseNetBlock_8                       | $1 \times 1$ | 64/8             | $128 \times 128$ | True          |
| PhaseNetBlock_9  | up(PhaseNetBlock_8)+up(pred_8)+pyr_9  | $3 \times 3$ | (64 + 8 + 16)/64 | $182 \times 182$ | True          |
| pred_9           | PhaseNetBlock_9                       | $1 \times 1$ | 64/8             | $182 \times 182$ | True          |
| PhaseNetBlock_10 | up(PhaseNetBlock_9)+up(pred_9)+pyr_10 | $3 \times 3$ | (64 + 8 + 16)/64 | $256\times256$   | True          |
| pred_10          | PhaseNetBlock_10                      | $1 \times 1$ | 64/8             | $256 \times 256$ | True          |

Table 2: **Details of the PhaseNet architecture.** The numbers of the channels and resolutions correspond to the case of using one color channel (weights reused for the other two) and a pyramid constructed with  $\lambda = \sqrt{2}$  and 4 orientations. The + in the input column corresponds to concatenating the channels. In total the network has about 460k trainable parameters.