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Figure 1: Critical points in 2D and 3D flows for two different particle models. In contrast to massless flows, inertial particles might oscillate.

Abstract
Traditionally, vector field visualization is concerned with 2D and 3D flows. Yet, many concepts can be extended to general
dynamical systems, including the higher-dimensional problem of modeling the motion of finite-sized objects in fluids. In the
steady case, the trajectories of these so-called inertial particles appear as tangent curves of a 4D or 6D vector field. These
higher-dimensional flows are difficult to map to lower-dimensional spaces, which makes their visualization a challenging problem.
We focus on vector field topology, which allows scientists to study asymptotic particle behavior. As recent work on the 2D case
has shown, both extraction and classification of isolated critical points depend on the underlying particle model. In this paper,
we aim for a model-independent classification technique, which we apply to two different particle models in not only 2D, but
also 3D cases. We show that the classification can be done by performing an eigenanalysis of the spatial derivatives’ velocity
subspace of the higher-dimensional 4D or 6D flow. We construct glyphs that depict not only the types of critical points, but also
encode the directional information given by the eigenvectors. We show that the eigenvalues and eigenvectors of the inertial phase
space have sufficient symmetries and structure so that they can be depicted in 2D or 3D, instead of 4D or 6D.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction

Flow visualization helps to gain insights into large and complex
scientific vector field data. Typically, the analysis is limited to
(un)steady 2D and 3D flows, which describe many natural physi-
cal phenomena such as the motion of gases or fluids. Many ideas
and concepts can be extended to inertial systems, i.e., systems in
which particles have a finite size and are subject to inertia. They
are of great importance in a number of scientific disciplines, such
as engineering (brown-out), biology (jellyfish feeding), meteorol-

ogy (sediment transport), or physics (spacecraft navigation). These
so-called inertial particles have not only a position, but also a ve-
locity vector. The rate of how both variables change is described by
a second-order ordinary differential equation, which can be inter-
preted as a higher-dimensional vector field, e.g., (un)steady flows in
4D or 6D. This means for instance, in every point of a 6D domain,
there is a 6-dimensional vector. This forms a large amount of data,
which introduces a number of challenges, both computationally and
perceptually. Flow visualization has proven to be a good candidate
for the visual analysis of such problems.
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This paper deals with steady flow-induced inertial systems, i.e.,
settings in which finite-sized objects are carried by a steady under-
lying air or fluid flow. One way to approach this high-dimensional
problem is to focus on topology, since it is a compact description of
asymptotic behavior. Recently, Günther and Theisel [GT16a] have
shown that the critical points (in dynamical systems these are also
known as fixed points, stationary points or singularities) of a certain
simple inertial system can be classified by the eigenvalues of the Ja-
cobian of the underlying 2D air flow. Such a classification, however,
depends on the underlying particle model and has to be revisited for
every other equation of motion. In this paper, we extend their work
in a number of aspects. Our contributions are the following:

• We regard the recent inertial flow visualization literature in terms
of particle model dependence and discuss the generalization of
inertial flow visualization concepts.
• We extract steady topology of flow-induced inertial systems not

only for 2D but also for 3D underlying flows.
• We classify inertial critical points for two different particle mod-

els, and propose a model-independent method in which both
appear as special cases.
• We utilize dynamical systems theory to identify oscillation around

strongly attracting critical points.
• We derive simple closed-forms of the inertial eigenvectors and

observe their properties and structure.
• We design a glyph that encodes directional information for the

visualization of inertial critical points.

2. Related Work

In this section, we emphasize the role of vector field topology in
traditional flow visualization. Afterward, we review recent work on
inertial flows in terms of independence of the equation of motion.

2.1. Vector Field Topology

Topology is one of the most fundamental aspects of vector field anal-
ysis. In their seminal work, Helman and Hesselink [HH89, HH91]
introduced topology to the visualization community, including the
classification of first-order critical points, separatrices starting at sad-
dles and attachment/detachment points at no-slip boundaries. Higher-
order critical points [SKMR98], boundary switches [dLvL99],
closed separatrices [WS01], saddle connectors [TWHS03] and
boundary switch connectors [WTHS04a] extended the understand-
ing of the topological skeleton. Vector field topology found numer-
ous applications to smooth [WJE01], compress [LRR00, TRS03],
model [The02, WTHS04b], or edit [CML∗07] vector fields using
Morse decomposition [CMLZ08]. For further reading, we refer to
Weinkauf [Wei08] and the reports of Laramee et al. [LHZP07],
Pobitzer et al. [PPF∗11], Wang et al. [WWL16] and Heine et
al. [HLH∗16]. In this paper, we study the topology of inertial flows.

2.2. Inertial Particles in Visualization

Inertial particle motion is governed by an equation of motion, which
can be described as a higher-dimensional vector field. In dynamical
systems theory, the domain in which these vector fields are defined
is called phase space and the trajectory of an inertial particle (i.e.,

the temporal evolution of the particle state) is simply a tangent
curve in it. Inertial particles are important in many scientific areas,
such as sand saltation modeling [SL99], soiling of cars [RSBE01],
visual obscuration in helicopter landing maneuvers [SGL10, SBL11,
KGRK14], formation of rain [Bor11], predator-prey movement in
jellyfish feeding [PD09,SPH11] or spacecraft navigation [SBHH15].
Depending on the application, different assumptions are made. Thus,
the higher-dimensional vector field that governs the particle motion
is different for every equation of motion.

Tailored Analysis. On the one hand, restricting the view to a very
particular particle model allows the user to study its unique prop-
erties, e.g., inertial vortex corelines [GT14]. Starting with simple
models is also an essential step in the research process, where we
later try to extend and generalize. An example is the extension of
inertial critical point classification [GT16a] to other equations of
motion, as done in this paper, or the extraction of so-called influence
curves [GT16c] in more general inertial particle models [GT17].
Influence curves recover the origin of an inertial particle. This is use-
ful, since traditional backward integration in flow-induced inertial
systems is numerically very difficult [MBZ06, HS08].

Local Abstraction. On the other hand, we strive for general con-
cepts to achieve broad applicability in not only flow-induced systems
(particles carried with fluids), but also in gravitational systems (plan-
etary systems). One approach is to introduce an abstract acceleration
variable in the equation of motion [SJJ∗17]. Depending on the appli-
cation, acceleration could be calculated from an underlying fluid or
from mass bodies (e.g., restricted three-body problem [SHT11], or
general multi-body problems [SBHH15]). We follow a similar ap-
proach for the inherently local classification of inertial critical points.
Instead of introducing an abstract variable in the higher-dimensional
vector field, we introduce abstract variables in the Jacobian.

Integration-based Abstraction. Another approach is the defini-
tion of an abstract inertial flow map, which maps a seed loca-
tion/velocity to the target location/velocity that is reached after inte-
gration for a certain duration. This approach was used for integration-
based concepts, such as inertial integral curves [GKKT13], the de-
termination of stable sets [GT16a], or derived quantities such as
multiplicity maps [SJJ∗17] or singular flow map gradients [GT16b].
Based on the flow map, finite-time Lyapunov exponents (FTLE) can
be defined, which measure the spatial separation of nearby-released
inertial particles [SH09, PD09]. Aside from spatial separation, also
the separation in the full phase space [GPPMn15] or in its sub-
spaces [SJJ∗17] can be measured. Inertial backward FTLE was
calculated by Sapsis et al. [SPH11], based on an ODE that cap-
tures the movement on attracting manifolds [HS08]. However, the
movement of larger particles becomes instable in areas of high
strain [SH08], driving them away from the manifold on which the
ODE is valid. More recently, Günther and Theisel [GT17] applied
influence curves to this problem, showing agreement with inertial
particle attractors, which were previously compared with massless
FTLE [SBR15]. Raben et al. [RRV14] computed FTLE for both
tracer particles and inertial particles from experimental trajectories.

In some cases, the inertial flow map is required to have addi-
tional properties. For instance in [GT15], separation in parameter-
dependent flow maps was studied, here, with respect to mass. The
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integration-based influence curve extractor [GT16c] requires the
flow map gradient to be invertible. This limitation was addressed
by [GT16b], who, however, require a discretization of the flow map.

Visual Mappings. The reduction to lower-dimensional spaces was
also of interest. Günther and Theisel [GT16a] used glyphs to encode
stable sets for varying initial positions and velocities in underlying
2D flows. In [GT16c], they also used glyphs to depict the parti-
cle velocities that are observed at certain locations in the domain.
Sagristà et al. [SJJ∗17] overlaid quantities measured in the spatial
subspace and the velocity subspace, and proposed to use stacked
visualizations. In some cases, the extracted features turn out to be
structures that can be searched in the domain of the underlying flow,
such as vortex corelines [GT14] or critical points [GT16a].

3. Equations of Motion and Their Derivatives

In this section, we describe the two inertial particle models that will
be used throughout this paper. Given is a steady n-D flow u(x) with
n ∈ {2,3} and its Jacobian matrix J =∇u.

Model I. Crowe et al. [CST98] modeled the motion of small spher-
ical objects in fluids by the governing inertial particle model:

ũ(x,v) = d
dτ

(
x
v

)
=

(
v

u(x)−v
r +g

)
(1)

where r is the so-called response time (or relaxation time), which
depends on particle diameter dp, particle density ρp and the viscosity
of the surrounding air µ:

r =
d2

p ρp

18 µ
(2)

This model was used for instance in [SGL10, PSGC11, KGRK14,
CGP∗10, BBC∗11]. In this paper, we set as particle density ρp the
density of dry sand, i.e., ρp = 1600kg/m3. The diameter dp was set
between 30µm and 500µm. The surrounding medium was assumed
to be air, thus the viscosity was set to µ = 1.532×10−5 kg/(m · s).

The Jacobian of the inertial flow contains all first-order derivatives
and is later used to characterize the types of critical points. For the
particle model in Eq. (1) the Jacobian is [GT16a]:

J̃(x,v) =
(

0 I
1
r J − 1

r I

)
(3)

This model assumes that the particle density is much higher than
the density of the surrounding air, e.g., as with sand particles in air.

Model II. A more general model that is also frequently used in the
CFD literature [HS08, BTT02, BCPP00, VdMG06, SBR15] incor-
porates the density ratio of inertial particles and the surrounding
medium, which removes one assumption from the previous model
and thereby allows scientists to include buoyancy effects. The gov-
erning ODE is given for steady underlying flows by:

ũ(x,v) = d
dτ

(
x
v

)
=

(
v

R
St (u(x)−v)+ 3R

2
Du(x)

Dτ
+(1− 3R

2 )g

)
(4)

with Du(x)
Dτ

=∇u ·u = Ju, St is the Stokes number (St→ 0 for mass-
less particles), and ρ f and ρp are the densities of the surrounding
air and the inertial particles, respectively. Their density ratio R is:

R =
2ρ f

ρ f +2ρp
(5)

The equations (1) and (4) are fairly similar. Both include the term
(u(x)−v), which lets inertial particles try to align their own veloc-
ity vector with the underlying flow. The scale factors r and R/St
determine how quickly the inertial particles respond to changes in
the underlying flow. While in Eq. (1) gravity was simply added,
Eq. (4) performs a linear blend between flow acceleration and grav-
ity, which is determined by the density ratio R. The Jacobian matrix
of this inertial particle model has the form:

J̃(x,v) =
(

0 I
R
St J+ 3R

2 ∇(Ju) − R
St I

)
(6)

4. Inertial Steady Vector Field Topology

In the following sections, we discuss the location, classification and
visualization of inertial critical points in 2D and 3D steady flows.

4.1. Location of Inertial Critical Points

In traditional vector field topology, critical points (also known as
stagnation points or fixed points) are locations where any asymptotic
particle motion stops, since there, the velocity is zero [HH89,HH91].
In inertial flows, critical points exist as well. Similar to the massless
case, these are locations where the inertial flow is ũ = 0. Applied to
the two inertial particle models, the following conditions arise:

Model I, cf. Eq. (1): u+ r g = 0
Model II, cf. Eq. (4): R

St u+ 3R
2 Ju+(1− 3R

2 )g = 0

Both conditions can be evaluated in n-D. The first condition was
reported in [GT16a] and is implemented by adding r g to the un-
derlying flow u prior to a search for critical points. The second
condition additionally involves the computation of the Jacobian, but
is likewise implemented as search for critical points in an n-D flow.

As with massless flows, inertial critical points are classified by an
eigenanalysis of the Jacobian matrix J̃, in this case a 2n×2n matrix.
If an eigenvalue is positive, particles are repelled in the direction of
the corresponding eigenvector; if it is negative, particles are attracted.
It turns out that the 2n eigenvalues can be calculated analytically
from the n eigenvalues of a certain n×n matrix. This not only eases
the computation of the eigenvalues, it further allows us to make
observations about their symmetry and signs. For the eigenvalues of
the inertial Jacobian in Eq. (3), this was done by [GT16a].

In this paper, we generalize the eigenanalysis of the inertial Ja-
cobian to the more general equation of motion in Eq. (4). Instead
of rederiving from scratch, we propose a general scheme, in which
both previously discussed particle models appear as special cases.

4.2. Classification of Inertial Critical Points

We have seen in the previous section that the inertial flows (1) and
(4), and their Jacobians (3) and (6) have a similar form. In the
following, we will name the response coefficient κ (note that κ > 0)
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and introduce a matrix K in the spatial gradient of the velocity
subspace. The inertial Jacobians can then both be described as:

J̃(x,v) =
(

0 I
1
κ

K − 1
κ

I

)
(7)

by setting
Eq. (3): κ = r K = J
Eq. (6): κ = St/R K = J+ 3St

2 ∇(Ju)

Further, let ei be the n eigenvalues and ci be the corresponding n
eigenvectors of matrix K, with i ∈ {1, . . . ,n}. Note that in model I
in Eq. (3), these are the eigenvalues and eigenvectors of Jacobian J
of the underlying air flow u. Günther and Theisel [GT16a] used this
relation to relate critical points of the underlying massless flow to
their inertial counterparts. In more complicated particle models, the
classification cannot be done by only considering the eigenvalues of
J in the underlying air flow.

For each eigenvalue ei of the matrix K, there are two eigenvalues
fi,1 and fi,2 in the inertial Jacobian (7):

fi,1 =
−1−

√
1+4κei

2κ
, fi,2 =

−1+
√

1+4κei

2κ
(8)

This was shown by [GT16a] in 2D for model I. As outlined in the
appendix, Eq. (8) holds generally, including the 3D case, and when
applied to the respective matrix K, even for more general models.

Necessary Attraction. Günther and Theisel [GT16a] concluded
that one eigenvalue of each pair has a negative sign, since their mean
is a negative real-valued number:

( fi,1 + fi,2)/2 =−1/(2κ) (9)

Thus, one eigenvalue of each pair must be smaller than the mean,
having a negative real part, w.l.o.g., let this be fi,1:

Re( fi,1)≤−1/(2κ)< 0 (10)

Due to the guaranteed presence of negative real parts, there is always
an attracting part in the inertial flow and traditional sources (all
eigenvalues are positive) no longer exist. From Eq. (8), we conclude
that this property holds similarly in 3D and in the inertial flow in
Eq. (4). Further, we can see that each eigenvalue pair is located
diametrically opposite around this mean. Along with the property
that complex eigenvalues appear in pairs of complex conjugates, this
creates symmetry in the complex plane. See Fig. 2 for an illustration.

Sign of Second Eigenvalue. According to Eq. (10), the eigenvalue
fi,1 is always negative. To classify the inertial critical point, we have
to determine when fi,2 becomes negative. According to [GT16a]
this depends on the eigenvalue ei of the underlying flow:

Re(ei)<−κ Im(ei)
2 (11)

Thus, when the underlying flow is attracting and when the rotation
(imaginary part) is too strong, then inertial particles are repelled
away from the critical point, since fi,2 is positive. This is intuitive,
since in this case inertia has a stronger impact on the particle trajec-
tory than the weak attraction. An example is shown later in Fig. 9.

Complex Eigenvalues. In traditional massless flows, complex
eigenvalues of the Jacobian indicate swirling motion. In inertial
systems, there is not only swirling motion, but also oscillation.

Figure 2: Oscillation (left) and swirling motion (right). In both
cases, eigenvalues f1,1, f1,2 (•), and f2,1, f2,2 (•) of the inertial
Jacobian are complex, and are located diametrically opposite
around the real-valued constant center −1/(2κ) (•), here shown
for κ = 0.5. In contrast to [GT16a], we distinguish these cases.

0
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heavy particle
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(a) Damping ratio ζ , Eq. (12)
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(b) Projection of eigenvectors di, j

Figure 3: Plot of damping ratio ζ, and projection of 2n inertial
eigenvectors di,1 and di,2 into spatial subspace gives n vectors ci.

Generally, the so-called damping ratio ζ characterizes, whether a
dynamical system oscillates [AH12]. In our case (see appendix):

ζ =
1

2κ
√
− e

κ

(12)

Damping ratio ζ depends on the response coefficient κ (particle size)
and the attracting eigenvalue e < 0. The classification is as follows:

• ζ > 1 : Overdamped. This is a movement toward the critical
point without oscillation. Overshooting can occur, but the eigen-
values fi,1 and fi,2 are real-valued.
• ζ < 1 : Underdamped. Trajectories are oscillating around the

critical point, but decay toward it for ζ 6= 0. Eigenvalues fi,1 and
fi,2 are complex.

• ζ= 1 : Critically damped. Threshold between the previous cases.
This is typically the fastest way to reach the critical point.

Günther and Theisel [GT16a] found that the eigenvalues fi,1 and
fi,2 of the inertial Jacobian are complex if

Re(ei)<−1/(4κ) (13)

This is obtained for Im(ei) = 0, when inserting (12) into ζ < 1. Thus,
the condition in Eq. (13) distinguishes for underlying non-swirling
flows, whether inertial particles are oscillating. Fig. 3a visualizes
the damping ratio ζ and shows that oscillation occurs for weakly-
attracted heavy particles and strongly-attracted small particles.

Properties of Eigenvectors. All relevant properties that are re-
quired to classify inertial critical points can be deduced from the
eigenvalues of K. But it still leaves us wondering, how do six eigen-
vectors span the 6D phase space?

The eigenvectors of the inertial flow can be calculated from the
eigenvectors ci of matrix K in the following way (see appendix):

d̃i,1 =

(
ci

fi,1 ci

)
, d̃i,2 =

(
ci

fi,2 ci

)
(14)

This means, for each eigenvector ci, there are two eigenvectors d̃i,1
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(a) Sink node (b) Single-osc. sink node (c) Fully-osc. sink node (d) Sink focus

(e) 2/2 saddle node (f) 1/3 saddle node (g) Osc. 1/3 saddle node (h) 2/2 saddle focus

Color coding:

repelling

weak attr.

strong attr.
(oscillation)

Shape coding:
node

oscillating
node

focus
(swirling)

Figure 4: Overview of all 8 types of inertial 2D critical points. Inertial streamlines (gray) were released from rest with v0 = 0.

and d̃i,2 in the inertial flow. In Eq. (14), we see that the spatial sub-
space of each pair of eigenvectors is exactly the eigenvector ci of
matrix K. Thus, if we project all 2n inertial eigenvectors into the
spatial subspace, we do not end up with 2n vectors, but only n, since
each vector occurred twice, see Fig. 3b. Further, the velocity sub-
space only contains scaled versions of the underlying eigenvectors
ci. Thus, all directional information can be shown by n vectors. This
insight leads us to the design of a glyph, described in Section 4.3.

Difference between Oscillation and Swirling. Günther and
Theisel [GT16a] distinguished inertial critical points only by the
number of complex eigenvalues in the inertial flow. While oscillation
and swirling are both rotations in the inertial phase space, inertial
particles behave differently in the spatial subspace for Im(ei) = 0
(weak attraction vs. oscillation) and Im(ei) 6= 0 (swirling motion)
when Eq. (13) holds. Thus, it matters whether the eigenvalues ei
of the underlying flow are complex. This can be seen in the way
how the swirling plane (i.e., the plane in which the rotation occurs)
is spanned in the inertial phase space. Swirling planes are gener-
ally spanned by eigenvectors that correspond to complex conjugate
eigenvalues. Let z∗ be the complex conjugate of z.

• In the case Im(ei) = 0 with Eq. (13), the eigenvalues computed
from ei are complex conjugates: fi,1 = f ∗i,2. This means, the
swirling motion occurs in the plane that is spanned by the eigen-
vectors corresponding to fi,1 and fi,2, which were computed from
one eigenvalue ei. Looking at Eq. (14), we see that for both the
spatial subspace of the eigenvector is ci, which does not span a
plane but only a line. This is an oscillation.
• For the case Im(ei) 6= 0, let ek be the complex conjugate of ei,

i.e., ei = e∗k . Then, fi,1 = f ∗k,1 and fi,2 = f ∗k,2 form the complex
conjugate pairs. In this case, the spatial subspace of two swirling
planes is spanned by eigenvectors ci and ck that were computed
from two different eigenvalues ei and ek. This is a swirling motion.

Fig. 2 illustrates inertial particle trajectories for both cases. Case
Im(ei) = 0 exhibits an oscillation, whereas Im(ei) 6= 0 clearly has
swirling characteristics. In contrast to [GT16a], we distinguish be-
tween these cases in our classification and visualization.

4.3. Visualization of Inertial Critical Points

Glyphs are a common tool to encode multi-dimensional data in
space [BKC∗13]. Seltzer and Kindlmann [SK16] and Gerrits et
al. [GRT17] recently proposed glyphs for general asymmetric
second-order tensors in 2D and 3D. They formulated lists of de-
sirable properties that a glyph should fulfill (invariance under iso-
metric domain transformations and scaling, direct encoding of real
eigenvalues and eigenvectors, uniqueness and continuity). Gerrits
et al. [GRT17] emphasized that certain properties might be less
important in the application at hand. In terms of critical points, for
instance, we are interested in topologically different behavior. There-
fore, we would like the transition between topologically different
behaviors (non-swirling vs. swirling, weak attraction vs. oscillation)
to be visible, i.e., discontinuous. We use the glyphs of Theisel et
al. [TWHS03] as a basis, see Weinkauf [Wei08] for applications of
them. We refer to Borgo et al. [BKC∗13] for further design criteria.

Color Coding. Similar to previous critical point glyphs [TWHS03],
we use color to encode the attracting/repelling behavior. For a given
particle model in an underlying n-D flow, we calculate for each
inertial critical point the velocity subspace matrix K according to
Eq. (7), which has n eigenvalues. By inserting them into Eq. (8), we
compute the 2n eigenvalues fi,1, fi,2 with i∈ {1, ...,n} of the inertial
flow. From Eq. (10) we know that half the eigenvalues are definitely
negative, w.l.o.g. let this be fi,1. Thus, in order to determine the
attracting/repelling behavior of the inertial critical point, we only
have to observe the remaining n eigenvalues fi,2 and thus, we color-
code only them. By inspecting ei using Eq. (11), we can distinguish
between attracting and repelling behavior. In addition, using Eq. (13)
we determine that strongly attracting nodes exhibit oscillation. Thus,
for nodes, we further distinguish between weak and strong attraction,
see Table 1 for the classification and Fig. 4 for examples. Swirling
motion and oscillation are encoded by the same color, since both
have in common that eigenvalues of the inertial system are complex.
Thus, for ( ) we have Im( fi,1) = Im( fi,2) = 0 and in case of ( ) we
have Im( fi,1) 6= 0, Im( fi,2) 6= 0.

c© 2017 The Author(s)
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(a) 3/3 saddle node (b) 2/4 saddle node (c) 2/4 saddle focus (d) Sink focus (e) Dbl-osc. sink node (f) Sink node

(g) 3/3 saddle focus (h) Osc. 2/4 saddle node (i) Osc. 2/4 saddle focus (j) Osc. sink focus (k) Fully-osc. sink node (l) Single-osc. sink node

(m) 1/5 saddle node (n) Single-osc. 1/5
saddle node

(o) Dbl-osc. 1/5
saddle node

(p) 1/5 saddle focus

Figure 5: Overview of all 16 types of inertial 3D critical points. Inertial streamlines (gray) were released from rest with v0 = 0.

Repelling: Re(ei)≥−κ Im(ei)
2

Weak attraction: Im(ei) = 0 ∧ − 1
4κ

< Re(ei)< 0

Strong attraction:
Im(ei) = 0 ∧ Re(ei)≤− 1

4κ

Im(ei) 6= 0 ∧ Re(ei)<−κ Im(ei)
2

Table 1: Color coding

Shape Coding. Similar to [TWHS03], we use shape to distinguish
between nodes (non-swirling) and foci (swirling motion), see
Fig. 4. Thereby, arrows depict a single eigenvector ci, whereas
the discs are spanned by two eigenvectors. For (fully-oscillating)
sink nodes and 3/3 saddle nodes, we use an ellipsoid, which is
oriented according to the three eigenvectors. Nodes have a smooth
boundary, whereas foci have a zig-zag boundary. In addition to
this, we introduce a new shape type that encodes oscillation, i.e., a
sine-shaped boundary, which is applied to spheres, disks and arrows
alike. The classification is done as follows:

Node: Im(ei) = 0 ∧ Re(ei)>− 1
4κ

Oscillation: Im(ei) = 0 ∧ Re(ei)≤− 1
4κ

Focus: Im(ei) 6= 0

Table 2: Shape coding

Glyphs in 2D and 3D. A complete overview of all 8 glyph types
in underlying 2D flows is given in Fig. 4. Fig. 5 illustrates the 16
different kinds of inertial critical points in underlying 3D flows.
We extended the naming conventions of [GT16a] to incorporate

oscillation, but otherwise followed their example. A 1/5 saddle for
instance, has one positive and five negative eigenvalues, whereas a
2/4 saddle has two positives and four negatives. In all images, we
released inertial streamlines with v0 = 0 at the gray spheres to show
the flow behavior in the vicinity of inertial critical points. Aside from
swirling motion, oscillation is apparent as well. We introduce the
notion of single-oscillating, double-oscillating and fully-oscillating
sink nodes, which declares the number of underlying eigenvalues
that cause oscillation. In case of single-oscillating sink nodes for in-
stance, Fig. 4b, we linearly blend the shape and color between weak
and strong attraction. The plane of the discs is chosen according
to the corresponding eigenvectors of the pair of complex conjugate
eigenvalues ei (swirling) or is spanned by the eigenvectors that have
eigenvalues ei with the same sign (saddles).

Regarding the aforementioned list of desirable glyph properties,
our glyphs are not unique, since swirling strength (rotation) is not
encoded. Gerrits et al. [GRT17] encode this via color, which would
be possible with our glyphs as well. Since we want to investigate the
interpretation of different types of complex eigenvalues, we chose
to use color to distinguish between weak attraction and strong attrac-
tion (in addition to representing oscillation with different shape).

5. Results

In the following, we extract and visualize inertial critical points in
a number of 2D and 3D vector fields. While the experiments in
magnetic fields are rather synthetic, they showcase our method in
flows that are more complicated than the frequently-used analytic
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Model I: dp = 100µm Model II: R = 0.2, St = 0.2
Figure 6: Different particle models applied to the NINECP flow.
Model II contains more critical points and exhibits oscillation.

Model I: dp = 100µm Model II: R = 0.2, St = 0.2
Figure 7: Over-damped (left) and under-damped (right) inertial
trajectories in the TWENTYSEVENCP flow, shown for both models.

ones. We also conduct experiments in fluid flows, which allow us to
infer insights, e.g., on particle trapping by vortices. We refer to the
accompanying video for animations of varying model parameters.

Random. Fig. 1 shows random underlying 2D and 3D flows, in
which we released inertial particles using both models. The 2D case
shows oscillating streamlines. While model I captures the motion of
aerosol particles, model II is also able to trace bubbles (R > 2/3).

NineCP. A more structured test case contains nine critical points
that are laid out on a regular grid [GT16a]. The underlying flow is:

u(x,y) =

(
x(1− x)(1+ x)
y(1− y)(1+ y)

)
(15)

In Fig. 6, inertial streamlines visualize the asymptotic motion toward
the inertial critical points. When the impact of the acceleration term
in Eq. (4) is large, model II may contain additional critical points. In
this experiment, all attracting behavior is under-damped for aerosol
particles (R < 2/3), which causes oscillation.

TwentySevenCP. A direct 3D extension of the previous case is:

u(x,y,z) =

x(1− x)(1+ x)
y(1− y)(1+ y)
z(1− z)(1+ z)

 (16)

Fig. 7 shows streamlines in this completely swirling-free test case.
For the given particles in model II, all attracting components have
complex eigenvalues in the inertial Jacobian, indicating oscillation.

Model I: dp = 250µm Model II: R = 0.8, St = 0.5
Figure 8: Aerosol particles (left) and bubbles (right) in the BOR-
ROMEAN. Note the oscillation at the top-right corner of model I.

Model I: dp = 160µm Model II: R = 2/3, St = 1
Figure 9: Impact of gravity in TREFOIL flow. Particles are pulled
down (model I) or are unaffected by it (neutrally-buoyant, model
II). Further note the closed orbit forming around the top-most 2/2
saddle in model I. Here, the underlying flow contains a sink, but the
rotational strength forces inertial particles to spin away.

Borromean. We observed inertial motion in a magnetic field, in
which field lines are interlocked in the shape of Borromean rings that
decay over time [CB11]. Fig. 8 shows a slice of one time step that
was used in [GT16a]. Our glyphs represent the strongly attracting
line in the top-right corner in model I well. The image of model II
shows the slightly more turbulent motion of bubbles (R > 2/3).

Trefoil. The trefoil is another magnetic field from [CB11] that
was used in [GT16a], and Fig. 9 depicts a 2D slice of it. In this
experiment, we added a synthetic gravity of g = (0,−2)T that pulls
the particles down in model I. As a reference, model II uses neutrally-
buoyant particles (R = 2/3), on which gravity has no impact. This

Model I: dp = 160µm Model I: dp = 400µm
Figure 10: Larger particles have more inertia and are repelled
away from attracting foci of the underlying DUFFING flow.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Tobias Günther & Markus Gross / Flow-Induced Inertial Steady Vector Field Topology

Model I: dp = 300µm Model II: R = 0.04,St = 0.2
Figure 11: Heavy aerosol particles in the BENARD flow (left) cluster between the vortices, since inertia drives them away from the vortex
cores. In the BENZENE field (right) trajectories oscillate around the fully-oscillating sinks. Note that there is no swirling motion.

Model I: dp = 500µm
Figure 12: In the SQUARE CYLINDER flow, heavy inertial particles are not trapped by the vortices of the von-Kármán vortex street.

aside, note the top-most 2/2 saddle in model I. The trajectories are
moving toward it. In fact, the underlying flow contains a sink. But,
its rotational strength causes inertial particles to drift away from the
critical point, leading them onto a closed orbit that surrounds it.

Duffing. The forced-damped Duffing oscillator in Fig. 10 gives
another example of inertial particles being repelled away from un-
derlying attracting foci due to rotational strength. Here, the impact of
particle size is illustrated. Larger particles have more inertia, which
is also why the critical point in the middle becomes oscillating. The
underlying vector field originates from a dynamical system, which
was studied in [HS11] and appeared in [GT15, GT16a].

Bénard. Another 3D example is given in the Rayleigh-Bénard con-
vection, simulated with NaSt3DGP, shown in Fig. 11 (left). The
inertial particles are so large that every rotating motion in this flow
causes them to be repelled outward. As a consequence, trajectories
tend to cluster in the void spaces between the critical points. Density
can be measured by preferential particle concentration [GT17].

Benzene. The underlying normalized potential field of a benzene
molecule [ZSH96] contains a large number of critical points. In
Fig. 11 (right), we scaled the domain significantly up to create a
synthetic test case, in which we extracted inertial critical points for
aerosol particles. The trajectories exhibit strong oscillation, which
is especially apparent at the oscillating 2/4 saddle node at the center
and the fully-oscillating sink nodes surrounding it.

Square Cylinder. The square cylinder flow was simulated by Ca-
marri et al. [CSBI05] and contains a vortex street in the wake of an

obstacle. The resampled version of the flow was provided by Tino
Weinkauf, and is shown in Fig. 12. Similar to the Bénard flow, no
critical point can trap inertial particles, since they are too heavy and
inertia repels them away. Instead, the inertial particles cluster in the
void spaces between the vortices of the vortex street.

Impact of Initial Velocity. It is important to note that the glyphs
show the asymptotic particle behavior. Depending on the initial
velocity, particles might overshoot critical points or perform detours
before aligning with the underlying flow. An example is shown in
Fig. 13, where particles are released with different initial velocities
near an attracting node (neither oscillation nor swirling). Over time
the impact of initial velocity vanishes and the attraction prevails.

Performance and Robustness. Since the search for inertial critical
points can be reduced to an n-D problem, the extraction performance
is similar to the traditional massless case. With model I, critical point
extraction and classification took for 2D data sets < 2ms and for
3D flows 50− 500ms with an Intel i7-6700HQ CPU. The only
exception was the BENZENE field with 1.2sec. The extraction in

Figure 13: Inertial particles are released in the same flow from the
same position, but with different initial velocity.
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model II was generally slower, since here additionally the gradient
of the acceleration ∇(Ju) is calculated, see Eq. (7). (In analytic
flows 1.3× slower, in real-world flows 3−5× slower.) The gradient
of the acceleration requires second-order derivatives of the vector
field. In numerical real-world data, their extraction can be sensitive
to noise, which is an inherent limitation of particle models that
require higher-order derivatives. The effect can be seen in the video.

6. Conclusions

In this paper, we extracted, classified and visualized critical points
of inertial particles in steady 2D and 3D underlying flows. We iden-
tified eight different types of critical points in 2D and sixteen critical
points in 3D underlying flows. In particular, we extended the work
of Günther and Theisel [GT16a] to 3D, generalized it to another
particle model, identified oscillation and included directional infor-
mation by the eigenvectors of the inertial system. The classification
of inertial critical points usually depends on the particle model. By
studying the Jacobians of two flow-induced inertial models, we de-
rived a common Jacobian template, in which both appear as special
cases. For generalization, we devised a classification method that is
applicable to any particle model that fits the template. This is also
our limitation. So far, even simple gravitational models, such as the
circular restricted three-body problem do not fit the template. In the
future, we would like to extend our method to gravitational systems.

Acknowledgements: We wish to thank Holger Theisel for the in-
sightful discussions on theory and glyph design.

Appendix

In the following, we briefly sketch the derivations of eigenvalues,
damping and eigenvectors of the inertial Jacobian, Eq. (8).

Eigenvalues of Inertial Jacobian. Inertial motion can be described
as second-order ODE of the form:

m
d2x
dt2 +b

dx
dt
− kx = f(t) (17)

In Eqs. (1) and (4) the particle motion was equivalently formulated
as two coupled first-order ODEs. The stability (attracting/repelling
behavior) of such a system is studied by its homogeneous part, i.e.,
without external forces f(t) such as gravity g. For our model in
Eq. (7), we have k =−K/κ. We separately study the behavior in the
direction of the eigenvectors, thus we consider x to be an eigenvector
of K, and get Kx = ex. The coefficients then become:

m = 1 b =
1
κ

k =− e
κ

(18)

The corresponding characteristic equation is [AH12]:

m f 2 +b f − k = 0 (19)

For (18), its roots are precisely the eigenvalues in (8). Thus it turns
out that Eq. (8) holds for every eigenvalue of K, including the 3D
case.

Damping Ratio. For a dynamical system of the form (17), the
damping ratio has a closed-form expression [AH12]. For (18) it is:

ζ =
actual damping
critical damping

=
b

2
√

k m
=

1
κ

2
√
− e

κ

=
1

2κ
√
− e

κ

(20)

Eigenvectors of Inertial Jacobian. Let e and c be an eigenvalue
and eigenvector of matrix K, respectively, i.e., Kc = ec. Further, let
f and d̃ be eigenvalue and eigenvector of matrix J̃. Next, we show
that eigenvector d̃ is (14):

d̃ =

(
c

f c

)
(21)

by showing that J̃ d̃ = f d̃, using Kc = ec and Eq. (8):

J̃ d̃ =

(
c f

Kc
κ
− c f

κ

)
=

(
c f

c(e− f )
κ

)
=

(
c f
c f 2

)
= f d̃ (22)
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