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1Disney Research 2ETH Zürich 3Dartmouth College

1 Implementation

In this section we provide additional implementation details.

Heterogeneous Grain Mixtures. We implement the assignment
of grain types to bounding spheres as Mixtures. Such a Mixture
implements a function which takes a bounding sphere’s index and
position as input arguments and maps these to natural numbers rep-
resenting grain types. Useful implementations of Mixtures include
explicit mixtures—e.g. from simulation data—which load an ex-
plicit mapping from disk, and various procedural mixtures, such
as the homogeneous deterministic pseudo-random mixture used by
Meng et al. [2015]. Additionally, we implemented a mixture which
selects one of two grain types based on Perlin noise [Perlin 2002],
or a checkerboard. We show examples of supported mixtures in
Figure 1.

Fast Procedural Grain Instantiation. Similarly to Meng et
al. [2015], we support procedural instantiation of grains filling a
scene-provided watertight bounding mesh. We adopt their tile-based
approach, where a pre-computed sphere packing inside a unit cuboid
is repeated ad infinitum in a 3D grid. The key difference between
our approach and their approach is which bounding spheres are
considered to be inside the bounding mesh. They require bounding
sphere centers to lie within the mesh, whereas we require the entire
spheres to be contained in the mesh. Our slightly more strict defi-
nition allows us to only intersect those bounding spheres which lie
along a ray segment passing through the mesh. Meng et al. [2015],
in contrast, resort to explicitly labeling the tiles within the meshes
bounding box in a per-scene pre-computation step, marking those
tiles in which bounding spheres should be intersected. This can lead
to wasted computation before and during rendering, since a single
tile can contain thousands of bounding spheres, of which many may
lie outside of the mesh. For each of these intersected spheres a
check has to be performed to truly know whether it lies within the
bounding mesh. For both their method and ours a simple way exists
for checking whether a given bounding sphere lies within the mesh.
Meng et al. [2015] shoot a ray from the center of the bounding
sphere, and evaluate whether the ray intersects the mesh from inside
or from outside. We traverse a kd-tree of the scene to check whether
there are triangles closer to the center of the bounding sphere than
the sphere’s radius. Finally, after a bounding sphere which passes
the aforementioned checks has been hit, a grain is instantiated and
path-traced.

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in ACM Transactions on Graphics. c© 2016 Copyright held
by the owner/author(s). Publication rights licensed to ACM.
SA ’16 Technical Papers,, December 05 - 08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982429

PPT and ST Rendering Pseudocode. Algorithms 1 and 2 de-
scribe the procedure of path-tracing when hitting a grain’s proxy,
and shell tracing in continuous volumes, respectively.

2 Shell Transport Functions

In this section we provide additional material supporting our claims
about STFs.

2D Cosine Hemisphere. In Figures 2 and 3 we show slices
through the 2D directional STF component of the 4D STFs de-
scribed by Moon et al. [2007] when computed on homogeneous
continuous media derived from snow and dielectric spheres, respec-
tively. As can be seen, the directional components of STF with
large radii converge to cosine hemispherical distributions. Small
shells generally have a small multiple-scattering component, and
thus the worse approximation of the multiple-scattering lobe with a
cosine-weighted hemisphere does not play as big a role.

Investigation of Approximations. In Figure 4 we show the ef-
fects of our various STF approximations on performance and bias.
We provide TTUV and MRSE values for each approximation step
we perform, and across a wide range of volume densities.

3 Grain-Scattering Distribution Functions

In this section we provide additional material supporting our claims
about GSDFs.

Investigation of Approximation. In Figure 5 through Figure 32
we visualize the approximation error introduced by our GSDFs in
the directional domain efg (~ωi, ~ωo) for various grain types. Fig-
ures 9 through 32 follow a common color scale, whereas Figures 5
through 8 have their own color scale in order not to overexpose the
visualization.
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(a) Homogeneous mixture (b) Checkerboard mixture (c) Explicit mixture

Figure 1: Various supported grain mixtures. Grains can be mixed homogeneously (a), arranged in a procedural 3D checkerboard pattern (b)
or distributed explicitly; e.g. governed by a simulation (c).

Algorithm 1 Path Tracing with Proxy Objects

function HANDLEPROXYVERTEX(xo, ~ωo)
(fg,xc)← GETPROXYSPHERE( xo ) . Obtain GSDF fg and grain center xc

~no ← (xc − xo)/‖xc − xo‖ . Compute proxy normal
βo ← cos−1(~ωo · ~no) . Compute inclination angle
αg ← α0

g(βo) + α+
g (βo) . Compute grain albedo conditional on βo

t← αgt . Adjust path throughput
ξ ← sample uniformly from [0, 1) . Randomly choose scattering type
if ξ ≤ α0

g(βo)/αg then . No scattering
~ωi ← ~ωo

xi ← xo + 2(~oi · ~ωo)~ωo . Pass straight through bounding sphere
else . Scattering

(xi, ~ωi)← sample from pg(·, ·|βo) . Importance sample scattering
Li ← Li + t · DIRECTLIGHT(xi, p

~ω
g (·|βo)) . Accumulate direct lighting

end if
end function

Algorithm 2 Path Tracing with Shell Transport Functions

1: function HANDLESHELLVERTEX(xc, ~ωc)
2: (fs, r)← GETLARGESTFITTINGSHELL( xc )
3: if r < r1 then . There is no shell which fits
4: USEVPT(xc, ~ωc) . Fall back to VPT
5: else
6: αs ← α0

s(r) + α1
s(α, g, r) + αm

s (α, g, r) . Compute shell albedo conditional on α, g, r
7: t← αst . Update path throughput
8: ξ ← sample uniformly from [0, 1) . Randomly choose scattering type
9: if ξ < α0

s(r)/αs then . No scattering
10: xs ← xc + r~ωc . Pass through the shell
11: ~ωs ← ~ωc

12: else if α0
s(r)/αs ≤ ξ < α1

s(α, g, r)/αs then . Single scattering
13: d1 ← sample uniformly from [0, 1) . Sample free-flight distance
14: x← xc + d1r~ωc . Compute single-scattering location
15: fp ← GETMEDIUMPHASE( x )
16: ~ωs ← sample from fp(·) . Sample medium phase function
17: θs ← cos−1(~ωc · ~ωs) . Compute scattering angle
18: d2 ← r

√
1− d21 sin2 (θs)/r2 − d1 cos θs . Compute distance to shell surface

19: xs ← x+ d2~ωs . Compute outgoing location on shell surface
20: Li ← Li + t · DIRECTLIGHT( x, fp(·) ) . Compute direct light
21: else . Multiple scattering
22: (xs, ~ωs)← sample from pms (·, ·|α, g, r) . Importance sample multiple scattering from tabulation
23: Li ← Li + t · DIRECTLIGHT(xs, p

m,~ω
s (·|α, g, r, θ)) . Accumulate direct light

24: end if
25: end if
26: end function
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Figure 2: Directional multiple scattering component of the shell transport function corresponding to snow. This figure visualizes the
dependence of the shape of the directional component on the shell’s radius r (horizontal) and the teleportation angle θt (vertical). As r
increases, the shape of the directional component approaches a cosine hemisphere.
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Figure 3: Directional multiple scattering component of the shell transport function corresponding to dielectric spheres. This figure visualizes
the dependence of the shape of the directional component on the shell’s radius r (horizontal) and the teleportation angle θt (vertical). As r
increases, the shape of the directional component approaches a cosine hemisphere.



Reference Approximate Solution Approximation Error (RSE×12)

VPT VPT+2D STFs +HG Phase +Tight Interp. VPT+Diffusion VPT+2D STFs +HG Phase +Tight Interp. VPT+Diffusion

10
cm
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rg

e

TTUV: 3.54e-4 hrs TTUV: 1.99e-4 hrs TTUV: 3.61e-4 hrs TTUV: 2.90e-4 hrs TTUV: 2.14e-4 hrs MRSE: 2.16e-5 MRSE: 5.88e-5 MRSE: 1.07e-4 MRSE: 8.21e-4

1
m
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rg

e

TTUV: 1.61e-3 hrs TTUV: 2.58e-4 hrs TTUV: 3.23e-4 hrs TTUV: 2.31e-4 hrs TTUV: 1.93e-4 hrs MRSE: 6.00e-5 MRSE: 1.10e-4 MRSE: 1.64e-4 MRSE: 1.25e-3

10
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rg

e

TTUV: 2.82e-3 hrs TTUV: 2.16e-4 hrs TTUV: 2.36e-4 hrs TTUV: 1.62e-4 hrs TTUV: 3.40e-3 hrs MRSE: 7.84e-5 MRSE: 1.45e-4 MRSE: 2.08e-4 MRSE: 1.33e-3

10
0

m
la

rg
e

TTUV: 3.04e-3 hrs TTUV: 1.82e-4 hrs TTUV: 2.09e-4 hrs TTUV: 1.61e-4 hrs TTUV: 2.21e-4 hrs MRSE: 8.29e-5 MRSE: 1.47e-4 MRSE: 2.14e-4 MRSE: 1.19e-3

Figure 4: We demonstrate the error introduced by each of the approximations we apply to STFs in the LUCY scene, which contains the
Lucy statue filled with a homogeneous continuous participating medium derived from densely packed snow grains. The first column shows
volumetrically path traced (VPT) reference images, which can be matched perfectly by the 4D STF in the case of homogeneous continuous
media. The following three columns demonstrate the visual impact of our approximations: 2D STFs approximate pm,~ω

s as a cosine-weighted
hemispherical distribution, using HG phase function significantly reduces the dimensionality of continuous-volume-appearance space to permit
dense tabulation, and interpolation between tabulated STFs allows fitting STF tightly into the mesh. The last column shows the diffusion
approximation employed by Meng et al. [2015], which yields higher error than all our approximations combined.
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Figure 5: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on sugar grains. We visualize this 4-dimensional error function by
plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from their center
and γi as their rotational component.
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Figure 6: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on sugar grains. We visualize this 4-dimensional error function by
plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from their center
and γi as their rotational component.
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Figure 7: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on brown sugar grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 8: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on brown sugar grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 9: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on ice grains. We visualize this 4-dimensional error function by
plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from their center
and γi as their rotational component.



cosβo \ γo 0 0.4π 0.8π 1.2π 1.6π

1

0.5

0

-0.5

-1

Figure 10: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on ice grains. We visualize this 4-dimensional error function by
plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from their center
and γi as their rotational component.
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Figure 11: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on snowflake grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 12: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on snowflake grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 13: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on white sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.



cosβo \ γo 0 0.4π 0.8π 1.2π 1.6π

1

0.5

0

-0.5

-1

Figure 14: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on white sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 15: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on yellow sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 16: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on yellow sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 17: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on brown sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 18: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on brown sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 19: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on dark brown sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 20: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on dark brown sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 21: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on black sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 22: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on black sand grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 23: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on flour grains. We visualize this 4-dimensional error function by
plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from their center
and γi as their rotational component.
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Figure 24: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on flour grains. We visualize this 4-dimensional error function by
plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from their center
and γi as their rotational component.
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Figure 25: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on hairball grains. We visualize this 4-dimensional error function
by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from their
center and γi as their rotational component.
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Figure 26: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on hairball grains. We visualize this 4-dimensional error function
by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from their
center and γi as their rotational component.
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Figure 27: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on cinnamon grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 28: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on cinnamon grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 29: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on dielectric sphere grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 30: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on dielectric sphere grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 31: Front-facing directional GSDF approximation error efg (~ωi, ~ωo) on diffuse sphere grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.
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Figure 32: Back-facing directional GSDF approximation error efg (~ωi, ~ωo) on diffuse sphere grains. We visualize this 4-dimensional error
function by plotting slices through cosβo (vertical) and γo (horizontal). The individual circular heatmaps encode sinβi as the distance from
their center and γi as their rotational component.


