
Label-Based Automatic Alignment of Video
with Narrative Sentences

Pelin Dogan1, Markus Gross1, and Jean-Charles Bazin2(B)

1 Department of Computer Science, ETHZ, Zurich, Switzerland
{pelin.dogan,grossm}@inf.ethz.ch

2 Disney Research, Zurich, Switzerland
jean-charles.bazin@disneyresearch.com

Abstract. In this paper we consider videos (e.g. Hollywood movies)
and their accompanying natural language descriptions in the form of
narrative sentences (e.g. movie scripts without timestamps). We pro-
pose a method for temporally aligning the video frames with the sen-
tences using both visual and textual information, which provides auto-
matic timestamps for each narrative sentence. We compute the similarity
between both types of information using vectorial descriptors and pro-
pose to cast this alignment task as a matching problem that we solve via
dynamic programming. Our approach is simple to implement, highly effi-
cient and does not require the presence of frequent dialogues, subtitles,
and character face recognition. Experiments on various movies demon-
strate that our method can successfully align the movie script sentences
with the video frames of movies.

1 Introduction

Audio description consists of an audio narration track where the narrator
describes what is happening in the video. It allows visually impaired people
to follow movies or other types of videos. However the number of movies that
provide it is considerably low, and its preparation is particularly time consum-
ing. On the other hand, scripts of numerous movies are available online although
they generally are plain text sentences. Our goal is to temporally align the script
sentences to the corresponding shots in the video, i.e. obtain the timing informa-
tion of each sentence. These sentences can then be converted to audio description
by an automatic speech synthesizer or can be read by a human describer. This
would provide a wider range of movies to visually impaired people.

Several additional applications could benefit from the alignment of video with
text. For example, the resulting correspondences of video frames and sentences
can be used to improve image/video understanding and automatic caption gener-
ation by forming a learning corpus. Video-text alignment also enables text-based
video retrieval since searching for a part of the video could be achieved via a
simple text search.

In this paper, we address temporal alignment of video frames with their
descriptive sentences to obtain precise timestamps of the sentences with mini-
mal manual intervention. A representative result is shown in Fig. 1. The videos
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are typically movies or some parts of movies with duration of 10 to 20 min. We
do not assume any presegmentation or shot threading of the video. We start
by obtaining the high-level labels of the video frames (e.g. “car”, “walking”,
“street”) with deep learning techniques [12] and use these labels to group the
video frames into semantic shots. In this way, each shot contains relatively dif-
ferent semantics knowing that the information given by the different sentences
is relatively different. Then we formulate the problem of text-video alignment
as sentence-shot alignment by finding similarity between the high-level labels in
the shots and the words of the sentences. This similarity is computed using the
vectorial features of words and word-to-word distances. Our final alignment is
formulated in a graph based approach computing the minimum distance path
from the first to the last sentence-shot pair. The main contributions of our paper
are:

– We align human-written sentences (such as scripts and audio description texts)
with the complete set of shots that constitutes the video. Our approach does
not require dialogues, subtitles, and face recognition. Our approach directly
works on the raw video, i.e. no presegmentation or cut is needed.

– We automatically segment the input video into shots by using frame based
high-level semantics so that a semantic change in a continuous camera shot
can be detected. We refer this semantic change as semantic cut through the
paper. We also introduce a refinement process to optimize the semantic cuts
so that they tend to correspond to one sentence each.

– We introduce a novel dataset of script sentence alignments of various video
sequences which are publicly available on the project page.

2 Related Work

Our goal is to temporally align a video with its script, which will provide a
timestamp for each sentence in the script. In the following, we describe the
related work on steps that will lead us towards this goal.

Image/video description. In the last years there has been an increasing inter-
est in object/scene recognition, object labeling, and automatic caption genera-
tion, in part thanks to the availability of new datasets [4,29,30]. With the recent
developments in deep convolutional architectures, large-scale visual recognition
by convolutional neural networks [12] and recurrent neural networks [6] has
achieved state-of-the-art results by surpassing the conventional methods. More-
over, impressive results have been obtained for describing images and videos
with natural language [6,8,9,13,18,22,24]. These approaches rely on a corpus
with strong annotations. The main reason why the current video description
performance is falling behind the image description is the lack of large anno-
tated video corpus that would provide better learning and understanding. Since
the manual annotation of videos with text is very time consuming, automatic
alignment methods of video-text pairs would increase the size of the corpus and
the variety of the content.
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Fig. 1. Given an input movie and associated narrative sentences (e.g. from the movie
script), our approach temporally aligns the video frames with the sentences and pro-
vides the timestamp information of the sentences. This figure illustrates a represen-
tative result for a 10-minutes long continuous video from the movie Lucid Dreams of
Gabriel. For a better visibility of the figure, only a 8-seconds segment is shown here.

Text similarity. The recent developments of the deep neural networks improved
the natural language processing tasks, with applications in information retrieval
and artificial intelligence. The computation of the similarity and relation between
words is an important step towards video-text alignment, for example to com-
pute the similarity between the high-level labels of the video frames (e.g. “car”,
“walking”) and the words of the script sentences(e.g. “She opens the car door”).
Some approaches use either using a thesaurus or statistics from a large text cor-
pus, or use both to compute word similarity [1,11,16,19,20]. In our work, we
will use the approach of Pennington et al. [20]: they propose an unsupervised
learning algorithm to obtain vector representations for words based on word-
word co-occurrence statistics from a text corpus. Their vector representation
demonstrates superior results in finding the semantic distance between words.

Shot segmentation. Aligning sentences with the corresponding video parts
requires shot detection and shot segmentation. For this, many of the auto-
mated shot-change detection methods use color histograms [7,10,15,17] or visual
descriptors [2,14,21]. These are mostly successful for shots that are bounded by
camera cuts or abrupt visual transitions. In the context of video-text align-
ment, distinguishing a semantic change through a single camera shot is valuable
because a semantic change in the video is usually associated to a new description
sentence within the script. Therefore we are using semantic features, namely
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high-level labels, to segment the full video into “semantic shots” and in turn
match the sentences with them.

Alignment. Tapaswi et al. [28] align book chapters with video scenes using
dialogues and character identities as cues with a graph based algorithm. Their
alignment requires face recognition in the video frames and presence of numer-
ous dialogues which may fail in case the movie does not have these densely.
Sankar et al. [26] align the scripts to TV videos/movies using location, face and
speech recognition. However this success of the method is mostly limited to TV
series, since it needs pre-training of the frequent locations within the video to
divide the scenes. Bojanowski et al. [3] propose a method for aligning video clips
to sentences given the vectorial features for both video and text. They require
the segmentation of the video unlike us and solve the problem using a condi-
tional gradient algorithm with the strong assumption that every video clip is
corresponding to exactly one sentence. Instead, we segment the video jointly
while performing alignment so that we do not require such strong assumption.
Tapaswi et al. [27] present an approach to align plot synopses with the cor-
responding shots with the guidance of subtitles and character identities using
dynamic programming. They require the extraction of character information
both in textual and visual forms by using face detector and tracker. Rohrbach
et al. [23] provide a dataset that contains transcribed descriptive video service,
which is temporally aligned to full length movies. Their dataset provides video
sentences with timestamps that match the video snippets. In contrast to our
automatic method, they perform the fine alignment of the sentences manually
which is significantly time consuming. Zhu et al. [31] aim to align books to their
movie releases by using visual correspondences as well as the correspondences
between the dialogues and the subtitles, which may fail for videos with very lim-
ited dialogues. Moreover their alignment is at a coarser level: they aim to match
book chapters with TV episodes. In contrast, we aim for precise (frame-level)
timestamps for sentences and shots.

3 Proposed Approach

In this section, we present our approach for aligning a video with its narrative
sentences, which results in a timestamp for each sentence. To have an accurate
alignment, the text input should provide at least one sentence for each shot in
the movie. By the term shot we refer to a series of frames that runs for an
uninterrupted period of time with the same semantics, not necessarily defined
by camera cuts. An example of text input for our algorithm can be a movie
script (dialogues not required). Another example would be a transcribed audio
description of the movie containing rich descriptions for visually impaired peo-
ple. We assume that the sentences are in the same temporal order as the movie,
like movie scripts and audio descriptions. Our approach is designed for videos
having a dynamic plot with different scenes and actions as in the typical Hol-
lywood movies. A counter-example is a biographical documentary film, such as
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an interview, where a person speaks to the camera during the whole duration of
the video, i.e. without any changes of scene or action.

3.1 Overview

We first obtain the high-level labels for all the video frames in the form of
words, as well as their confidence scores, using deep learning techniques [12].
Then we smooth these through the time domain to obtain temporal coherency.
The temporally coherent results are used to detect the semantic changes in
the video, which corresponds to the beginnings and ends of the shots. Then
the labels and their confidence scores of the frames of each detected shot are
grouped together to represent the shots. We then calculate a similarity score for
each shot-sentence pair using the labels from the shot and the sentence words.
This provides a cost matrix and we then compute the minimum distance path
assuming the matching of the first and last sentence-shot pairs are given. The
nodes of the calculated path provides the matching of the sentence-shot pairs.
This results in the annotation of each input sentence with the timestamp of the
matched shot.

3.2 High-Level Features and Temporal Coherency

We start by obtaining the high-level features (labels) of each frame of the input
video. Each video frame is processed independently and thus can be processed in
parallel. These high-level labels are in the form of text words and typically refer
to object (e.g. “car”), scene (e.g. “street”) or action (e.g. “walking”) visible in
the video frame. We automatically obtain these labels, as well as their confidence
score, by the deep learning based cloud service Clarifai1 or Caffe framework [12]
with pretrained models for its CNN architecture. As a result, for each video frame
i we obtain a feature vector wi whose number of entries is the total number of
labels (around 1000) and the entry values are the confidence scores for the label
corresponding to that entry index. A representative result vector for a frame
from the movie Lucid Dreams of Gabriel is shown in Fig. 2.

By concatenating these column vectors wi over time, we obtain a matrix W
containing the confidence scores of the labels through time. A representative
example is shown in Fig. 3-top. Each row of this matrix represents the scores of
the label corresponding to that row index (e.g. “car”) through time. If the entries
of this row are all zero or very small, it means the corresponding label is not seen
in the frames, e.g. no “car” object is visible in the entire video. The values in the
matrix rows are noisy due to motion blur, occlusions, lighting change, and all the
effects that decrease the performance of the automatic object/scene recognition
tools. Therefore the obtained matrix requires smoothing in the temporal domain
(x-axis) to provide temporal coherency between the neighboring frames. We aim
to find the labels that have high confidence scores while eliminating the labels
that are not temporally consistent. We find the labels by a graph based shortest

1 https://www.clarifai.com/.

https://www.clarifai.com/
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Fig. 2. Representative example of high-level labels and their confidence scores given
an input video frame. Top: the input frame i from the movie Lucid Dreams of Gabriel.
Bottom: the top 10 labels (in terms of confidence, out of 1000) and their confidence
scores. The full confidence score vector (over all the labels) at frame i is written wi.

path approach. We empirically set N to 10 and observed that higher values did
not significantly change the final alignment results. We refer to the set of labels,
one per frame through time, as a “path” q through the cost matrix, and our
aim is to find the N shortest paths which will give us the N most dominant
and temporally coherent labels for each frame. For this, we apply a shortest
path algorithm N times in the following way. To find the first shortest path
q1, we consider the matrix W as a directed graph where the nodes are each
<frame,label> pair and the edges are defined using the entries of the matrix W
(see Fig. 3). The weight of the edge from node (i, l) to node (i′, l′) is defined as

φ ((i, l), (i′, l′)) =
{

λ(1 − wi′(l′)) + ϕ(l, l′) if i′ = i + 1
∞ else (1)

where ϕ(l, l′) returns 1 when l �= l′ and 0 otherwise, and where wi(l) is the score
of the label indexed by l at frame i, i.e. node (i, l). The scaling factor λ sets
the desired smoothness by penalizing the change of the label through the path
and we set it to λ = framerate

10 , where framerate is the frame rate of the input
video (usually 24 fps). We apply Dijkstra’s algorithm [5] to obtain the minimum
distance path solution. After finding the first path, we remove the edges pointing
to the nodes of the calculated path so that those nodes cannot be selected for
the future paths. We repeat this procedure to find the N shortest paths, that is
to say the N most dominant labels. After the calculation of paths q1, ..., qN , the
scores of the labels on the paths are smoothed with weighted moving average
filter. A resulting temporally coherent matrix can be seen in Fig. 3-bottom. For
writing simplicity, we still name this processed matrix as W.

3.3 Shot Segmentation

So far, we explained how to obtain the temporally coherent labels and scores
per frame stored in W. We now aim to segment the whole input video into
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Fig. 3. Top: concatenated label vectors wi. The height of this matrix depends on
the number of unique labels detected through the whole video. Bottom: Temporally
coherent result after path calculations where noisy labels are removed or smoothed.

shots by processing the matrix W. For a frame to be the beginning of a new
shot, it has to be different than the past neighboring frame and similar to the
future neighboring frame. Since we already have applied temporal filtering, the
scores in W carry temporal information from neighborhood, not just from the
surrounding frames. We calculate a score Si that represents the score of frame i
to be the beginning of a new shot:

Si = |DC(wi, wi−1)|(1 − |DC(wi, wi+1)|) (2)

where wi is the vector of label scores of the frame i and DC computes the
cosine distance of the input vectors.

Then we find the top K local maxima among all Si, where K is the number
of sentences in the input text. The frames corresponding to these maxima are
our initial shot beginnings. It is important to note that we do not define shots by
camera cuts. As discussed earlier, we refer to “shot” as a sequence of consecutive
frames that have a similar semantic. Other than camera cuts, semantic cuts are
considered as “shots” as well. For example, a continuous panning shot might
have two different semantics with a soft border around the middle of the pan.
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This panning shot needs to be segmented into two shots since there might be
two different sentences describing it due to semantic change. Therefore our aim
is not finding the camera cuts, but optimizing (and thus detecting) the semantic
cuts -including camera cuts- that will match the sentences in the best way.

3.4 Alignment

Cost matrix. In the previous sections, we have automatically segmented the
input video into shots according to their semantic contents and their smoothed
features. As the basis of our method, we need a robust estimate of the alignment
quality for all the shot-sentence pairs. We observe that a shot and a sentence are
more likely to be alignable together if the words in this sentence and the labels
of this shot are semantically similar. Using this concept, we compute a similarity
value vij between each shot i and sentence j. Subsequently, we transform these
values into a cost matrix C ∈ R

K×K , in which each entry cij specifies a cost for
aligning a pair of shot and sentence.

We represent the shot labels and the sentence words using GloVe word vector
descriptors [20] of dimension b = 300. For each detected shot, we consider the
set of all the N labels and scores found in all the frames of the shot. We denote
the l-th label of the i-th shot by its confidence score fi(l) and its GloVe vector
descriptor di(l) ∈ R

b where l ∈ [1...N ]. Similarly, we denote the m-th word of
the j-th sentence with its GloVe descriptor dj(m) ∈ R

b. The similarity between
the label l and the word with index (j,m) is calculated as

zij(l,m) = |di(l) − dj(m)| (3)

which is modified by Lorentzian stopping function as

yij(l,m) =
(

1 +
∣∣∣∣zij(l,m)

σ

∣∣∣∣
α)−1

(4)

where α = 3 and σ = 0.5 for all the experiments shown in this paper.
Finally the similarity values yij(l,m) are used to compute the cost matrix

C in which low values indicate shot-sentence pairs that are likely to be a good
match. The entries of the cost matrix C′ are computed as

c′
ij = 1 − 1

M

M∑
m=1

fi(l)max
l∈N

yij(l,m) (5)

Lastly, we obtain the values of the cost matrix C by scaling the values of C′

with an oriented 2D Gaussian factor which penalizes the elements in the upper
right and lower left corner. In this way we incorporate the global likelihood of
being at any node in the graph to our cost matrix considering passing through
the nodes at the top-right or bottom-left corners are very unlikely.

cij = c′
ij exp

(
− (i − j)2

2K2

)
(6)
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Fig. 4. Cost matrix whose elements cij are computed using similarity score between
shot i (y-axis) and sentence j (x-axis).

An example of cost matrix for each pair of sentences and computed shots is
available in Fig. 4.

Path calculation. So far we have described mappings between the shots and
sentences. We now explain how to find a discrete mapping p : R → R

2 in our
cost matrix: for a time t, p(t) = (i, j) means that the shot i corresponds to
the sentence j. We refer to the discrete representation of a mapping p as a
path through the cost matrix C, and consider a graph based solution to find
the minimum distance path. This path will provide the optimum shot-sentence
pairings. We compute the cost of a path p as the average of all the entries in the
cost matrix that the path goes through:

ψ(p) =
1
T

T∑
t=1

C(p(t)) (7)

where T denotes the number of steps in the path.
To find the path with minimum cost, we consider the cost matrix as a directed

graph where a path is defined as the set of connected nodes. We identify a node
by its position (i, j) and edge as an ordered pair of nodes. Since we assume
the input text sentences are in the same temporal order as the video, we only
allow forward motion. In other words each node (i, j) is connected to its three
neighbors (i, j + 1), (i + 1, j + 1), and (i + 1, j). The weight of each edge is the
value of the cost matrix at the node that the edge points to. An example graph
of the possible connections is shown in Fig. 5.

We use dynamic programming to find the minimum distance path [25]. Com-
puting the shortest path from the first node (1, 1) to the last node (K,K) pro-
vides us the initial result for the shot-sentence pairings. An alignment result is
shown in Fig. 6. The pink plot on the graph represents the ground truth align-
ment. The black plot shows the regions where our result is different than the
ground truth. It is important to note that the y-axis represents the frames, not
the shots. This is why paths have discrete vertical parts which corresponds to
the set of frames corresponding to a shot.
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Fig. 5. Left: Possible oriented connections (in orange) between the nodes where the
red node is considered the source and the green node is the sink. Right: An example
path result from the source to the sink. (See text for details.) (Color figure online)

Refinement. As mentioned earlier, the sentences in the input text description
do not have to correspond to the camera cuts. In addition, the result of the shot
segmentation does not have to give the perfect shots for the sentences. This may
cause the matching of a shot with more than one sentence (horizontal parts in
the path) or matching of a sentence with more than one shot (vertical parts in
the path). Therefore, the alignment that is obtained by the current cost matrix
may not be the optimum.

We compute the optimum alignment by modifying the cost matrix in an iter-
ative refinement procedure. Starting with the current optimum path, we combine
the shots that are matched to the same sentence into a single shot. Conversely
we segment the shot that is assigned to more than one sentence for another
round. The segmentation of this shot is conducted in a way similar to Sect. 3.3.
We find r − 1 local maxima among Si in Eq. 2 in the corresponding region of
frames during this shot, where r is the number of resulting sentences matched
with it. In this way we obtain r shots that can be assigned to these r different
sentences.

For example, the shots corresponding to the pink nodes (same column) on
the path in Fig. 5 will be combined together, while the shot corresponding to
the blue nodes (same row) will be split into two shots. After this refinement, we
repeat all the steps starting from Sect. 3.4 to find the new optimal path. In our
experiments, we observed that the result converges in less than 4 iterations. The
effect of this refinement step is shown in the cost matrices of Fig. 6.

4 Applications

In this section we demonstrate different applications and the results obtained by
our algorithm. Please refer to our project webpage for video results.

Video-sentence alignment. Aligning descriptive sentences to video in an auto-
matic way can provide rich datasets for modeling video contents. The resulting
video-sentence alignments can be used as training data to learn models for the
task of automatic generation of video descriptions. An example of video-sentence
alignment obtained by our algorithm is available in Fig. 7. It shows two con-
secutive shots separated by a sharp camera cut and the automatic alignment
of the corresponding sentences. The sentences are marked automatically by the
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Fig. 6. The alignment result automatically obtained by our approach for the full movie
(11 min) Lucid Dreams of Gabriel with its audio description sentences. Top: The initial
alignment result using the initial shot segmentation results. The alignment of a shot
to two consecutive sentences is seen in the close-up view (red box). Bottom: Our final
alignment result after the refinement process. The close-up view shows that our result
exactly matches with the ground truth alignment. (Color figure online)

timestamps that correspond to the very first frame of the shots by our algorithm
since the beginning of these shots are captured perfectly.

Shot segmentation. Shot segmentation is used to split up a video into basic
temporal units called shots. These units have consecutive frames taken contigu-
ously by a single camera, representing a continuous action in time and space.
Shot segmentation is an important step for various tasks such as automated
indexing, content-based video retrieval and video summarization. While detect-
ing sharp camera cuts is not a difficult task (as shown in Fig. 7 for a sharp
camera cut), detecting only the camera cuts may not be sufficient for video-text
alignment or other video retrieval tasks. The target material can have differ-
ent types of separation. For example two sentences can take place in the same
scene with a continuous camera shot while representing two different semantic
information. A representative example of such a case is shown in Fig. 8 where
the shot starts by a woman getting into the car and ends with a child having
a chocolate bar. Although this scene is shot continuously by a panning camera
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Fig. 7. Two consecutive shots (one frame of each shot is shown here) separated by a
sharp camera cut and their aligned sentences, i.e. the nodes for these shot-sentence
pairs are on the minimum distance path of the cost matrix.

Fig. 8. A continuous camera shot with two semantic shots aligned with the sentences
from its audio description. Top row: She opens the car door and gets in. Bottom row:
She gives the chocolate to Gabriel that is in the car. (From Lucid Dreams of Gabriel)

(i.e. not camera cut), it represents two different semantics which are expressed
by two sentences in the audio description. Our joint segmentation approach is
able to successfully detect the semantic cuts indicated by different sentences in
the text input.

5 Evaluation and Discussion

We evaluated the proposed alignment method on a dataset of 12 videos with
the sentences from their scripts or audio descriptions, including continuous long
sections from the movies Lucid Dreams of Gabriel, The Ninth Gate, The Wolf of
Wall Street and Yes Man. The duration of the videos in the dataset ranges from
10 to 20 min with 9.51 sentences per minute on average. The dataset is available
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on the project webpage and provides our results of shot segmentation, sentence
alignment including timestamps, as well as ground truth data.

We now present the evaluation of our proposed alignment approach with
respect to the manually obtained ground truth data. We measure the alignment
accuracy by computing the temporal error between the ground truth timestamps
of the sentences and the timestamps obtained by our approach. Figure 9 shows
the distribution of the temporal error. It shows that 88.64% of the sentences
have a temporal error of 0 s, i.e. our timestamps exactly correspond to the ground
truth timestamps. This demonstrates the accuracy of our alignment approach.

Fig. 9. Distribution of the absolute error in seconds on the timestamps obtained by
our algorithm with respect to the ground truth timestamps. 88.64 % of the sentences
are matched perfectly to the first frame of the corresponding shot.

We now present the evaluation of our proposed shot segmentation approach
with respect to the manually obtained ground truth shot segmentation. We con-
sider two metrics again. Firstly we measure the number of shots detected by our
approach over the total number of ground truth shots in the movie. Secondly, we
measure the number of correctly detected shots by our approach over all detected
shots, which includes false positives. The evaluation is shown in Fig. 10.

Fig. 10. Evaluation of our shot segmentation method. 95.97 % of the ground truth
camera shots are detected by our method. 90.15 % of the shots detected by our algo-
rithm correspond to the ground truth camera cuts. Meanwhile, only 3.03 % of the shots
detected by our approach are false positives.
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Our method has some limitations. First, in order to correctly align the frames
with the corresponding sentences, the image labeling tools (e.g. object/scene
recognition) should provide sufficiently accurate labels and scores. The accuracy
of our method can directly benefit from the next advances of the image labeling
tools.

Another limitation is that our method is not designed for videos that mostly
consist of close-up shots (e.g. interview videos) rather than scenes, actions and
motion. Such video frames would not result in sufficient object/scene labels due
to the lack of action and scene changes. We focused on more general movies
because we believe they are more common. However, our method is suitable for
a simple integration of dialogue-caption alignment approaches used in [28,31]
that could be included as another variable in our global cost matrix. In future
work, this integration could improve the results in videos that lack narrative
sentences during dialogues.

A future application of our approach can be segmentation and structuring
of videos that will allow important post-applications in content-based media
analysis. Clustering of video units like shots and scenes allows unsupervised or
semi-supervised content organization and has direct applications in browsing in
massive data sources. Given the framewise high-level labels and timestamps of
shot intervals of a video obtained by our algorithm, we can easily cluster these
shots. Treating the rows of the cost matrix as the features of the segmented
shots, one can simply apply a clustering method to obtain shot clusters.

In future work, it would be interesting to extend the proposed approach to
cope with different types of media materials by bringing them into a common
representation. For example a storyboard with drawing and sketches could be
aligned with the corresponding shots in the movie using the high-level labels and
their vector descriptors in an analogous way.

6 Conclusion

In this paper, we proposed an automatic method for temporally aligning the
video frames of a movie with narrative sentences, for example issued from the
movie script. Our approach segments the video into semantic shots and aligns
them with the sentences in an iterative way by exploiting vector descriptors for
text representation. Experiments on various movies successfully demonstrated
the validity of our approach.
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