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Tanja Käser Alexander G. Schwing Tamir Hazan Markus Gross
ETH Zurich ETH Zurich University of Haifa ETH Zurich

Abstract

Computational education offers an important
add-on to conventional teaching. To provide
optimal learning conditions, accurate repre-
sentation of students’ current skills and adap-
tation to newly acquired knowledge are es-
sential. To obtain sufficient representational
power we investigate suitability of general
graphical models and discuss adaptation by
learning parameters of a log-linear distribu-
tion. For interpretability we propose to con-
strain the parameter space a-priori by lever-
aging domain knowledge. We show the ben-
efits of general graphical models and of regu-
larizing the parameter space by evaluation of
our models on data collected from a computa-
tional education software for children having
difficulties in learning mathematics.

1 INTRODUCTION

Arithmetic skills are essential in modern society but
many children experience difficulties in learning math-
ematics. Computer-based learning systems have the
potential to offer an inexpensive extension to conven-
tional education by providing a fear-free learning envi-
ronment. To provide effective teaching, adaptation to
the user’s knowledge is essential. This is particularly
important for students suffering from learning disabil-
ities as the heterogeneity of these children requires a
high grade of individualization.

A variety of methods are currently employed to model
user knowledge and behavior. Markov Decision Pro-
cesses are used for teaching planning (Brunskill and
Russell, 2011; Rafferty et al., 2011) or diagnosing mis-
conceptions (Rafferty et al., 2012). Logistic regression
was proposed for modeling student learning (Rafferty
and Yudelson, 2007; Yudelson and Brunskill, 2012;
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Rafferty et al., 2013). Furthermore, student knowledge
and learning can be represented by Hidden Markov
Models (HMM) (Piech et al., 2012), Bayesian net-
works (Brunskill, 2011; González-Brenes and Mostow,
2012b,a) or Bayesian Knowledge Tracing (BKT) (Cor-
bett and Anderson, 1994). Bayesian Networks are
also employed to model and predict students’ learning
styles (Kim et al., 2012), engagement states (Baschera
et al., 2011; Käser et al., 2012) and goals (Conati et al.,
2002). In cognitive sciences, bayesian networks are ap-
plied to model human learning (Kemp et al., 2010a;
Frank and Tenenbaum, 2010; Kemp et al., 2010b) and
understanding (Baker et al., 2005).

A crucial task when representing student knowledge
with a probabilistic graphical model is recovery of a
joint distribution over the model domain. Its goal is
two-fold: The model should enable accurate predic-
tion of student knowledge, while being interpretable.
Addressing accuracy on the one hand, previous work
has demonstrated the benefits of more complex stu-
dent models (Lee and Brunskill, 2012; Yudelson et al.,
2013). Obtaining interpretable parameters on the
other hand has proven to be a challenge (Beck and
Chang, 2007). This problem has been addressed by
using brute-force grid search methods (Baker et al.,
2010), imposing maxima on parameter values (Corbett
and Anderson, 1994), contextual estimation of param-
eter values (Baker et al., 2008, 2010) or the analysis of
expectation maximization (EM) convergence (Pardos
and Heffernan, 2010b).

Our contributions are two-fold: first we introduce a
framework to cope with more complex models, and
second we show how to obtain interpretable results.
Contrasting previous work on parameter learning with
tree-structured models like HMMs we opt for more
complex loopy parameterizations while noting that
learning and inference is a challenge. We include a-
priori domain expert knowledge via regularization with
constraints to naturally enforce interpretability and
show efficacy of our approach on data collected from a
computer-based training program for learning mathe-
matics (Käser et al., 2013).
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2 BACKGROUND

Hidden Markov Models for Data Driven Educa-
tion Traditionally, HMMs and BKT (Corbett and
Anderson, 1994), a special case of HMM (Reye, 2004),
are popular approaches for modeling student learning.
The student knowledge is represented as a binary la-
tent variable indicating whether the student masters
the skill in question. Binary observations, i.e., correct
or wrong answers to questions, are used as surrogates
to predict whether the student acquired the respective
skill. Traditional BKT uses four model parameters:
prior probability p0 of knowing the skill, probability
pL of a skill transitioning from not known to known
state, probability pslip of making a mistake when ap-
plying a known skill and probability pguess of correctly
applying an unknown skill. Here, we also model the
second transition probability, i.e., the forget probabil-
ity pF , commonly assumed to be zero.

The learning task in BKT proceeds as follows: consider
a skill X , e.g ., subtraction, and the student’s sequence
of answers Y being a product space composed of mul-
tiple elements of the binary set {correct,wrong}. Dur-
ing learning we are interested in finding interpretable
parameters p = {p0, pL, pF , pslip, pguess} that yield a
“good” prediction of the student’s answers y ∈ Y as
well as information about a sequence of binary latent
variables denoting whether the considered skill is mas-
tered by the student. Learning in BKT was for exam-
ple done using a brute-force grid search method (Baker
et al., 2010) or expectation maximization (Pardos and
Heffernan, 2010a; Wang and Heffernan, 2012).

Structured Learning for Data Driven Educa-
tion We emphasize that the approach presented in
the following permits to consider skills jointly within
a single model. Hence we can leverage the correlations
between different tasks such as addition and subtrac-
tion. To generalize the HMM models of a single skill
to arbitrarily complex models, we describe the learn-
ing task as follows: consider an input space object X ,
i.e., a students’ set of skills like subtraction, addition,
multiplication etc., and the corresponding task specific
output space Y, i.e., a sequence of student answers. In
addition we let H denote all the unobserved variables,
i.e., missing student answers and importantly the un-
observed binary variables denoting whether a skill is
mastered.

Further, let φ : X × Y × H → RF denote a mapping
from the input, output and latent product space to the
F -dimensional feature space. During learning we are
interested in finding those weights w ∈ RF that yield
a “good” fit of the log-linear model distribution

pw(ŷ, ĥ) ∝ expw>φ(x, ŷ, ĥ) (1)

to a training set D of |D| input- and output-space ob-

ject pairs (x, y) ∈ X × Y, i.e., D = {(xi, yi)|D|i=1}.

Performing maximum likelihood we choose the weights
w such that the model assigns highest probability to
the data set D. Since the unobserved variable space
does not reveal any information we marginalize it out
and let p(ŷ | x,w) ∝

∑
ĥ∈H expw>φ(x, ŷ, ĥ). If

the data is independent and identically distributed
(i.i.d.), minimization of the negative log-likelihood
− ln[p(w)

∏
(x,y) p(y | x,w)] yields the following op-

timization

min
w

C

2
‖w‖22 −

∑
(x,y)∈D

ln p(y | x,w),

with a log-quadratic prior function p(w).

Features To specify the feature vector φ we relate
traditional HMMs used in computational education to
the aforementioned log-linear models. Consider the
transition probability pL from a skill which is not mas-
tered to being known by the student. This parameter
is part of a conditional probability table p(hr+1 | hr)
which is specified by the two probabilities pL and the
forget probability pF . We note that pL = p(hr+1 =
1 | hr = 0) = 1 − p(hr+1 = 0 | hr = 0) and let
p(hr+1 | hr = 0) ∝ expwr,0(1 − 2hr+1). We there-
fore obtain the feature function φ(hr+1) = 1− 2hr+1.
We proceed similarly for the emission probabilities and
therefore obtain the joint distribution as a product of
the exponential terms which translates to a weighted
linear combination of feature vector entries in the ex-
ponent, i.e., the model given in Eq. (1). We detail the
feature vector for our more complex models in Sec. 4.

Optimization Considering optimization of the
aforementioned non-convex cost function we com-
monly follow the expectation maximization (EM) ap-
proach or more generally the concave convex procedure
(CCCP). We linearize the concave term by computing
its gradient at the current iterate and subsequently
minimize a convex objective. This step, identical to
optimizing HMMs via EM, is guaranteed to converge
to a stationary point.

But contrasting the HMMs, neither linearization of
the concave part nor minimization of the resulting
convex objective is computationally tractable for gen-
eral models. To our benefit and as indicated before
and detailed below, the elements of the feature vector
φ(x, y, h) typically decompose into functions depend-
ing only on a small fraction of variables. This can
be employed to approximate the objective. Recently,
Schwing et al. (2012) showed that a convex approx-
imation admits more efficient learning of parameters
than its non-convex counterpart.
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Note that interpretability of the parameters w is
not guaranteed, particularly since guarantees exist for
only converging to a local optimum. However, inter-
pretability implies some form of expectation regarding
the parameters. In the following, we therefore propose
to constrain the parameter space. This is useful since
domain experts are capable of restricting the range of
acceptable parameters, e.g ., it is reasonable to assume
the guess probability pguess to be less than 0.3.

3 LEARNING WITH
CONSTRAINED PARAMETERS

Let ¯̀(x, y, w) = − ln p(y | x,w), i.e., explicitly,

¯̀(x, y, w)=ln
∑
ŷ,ĥ

exp φ̂(x, ŷ, ĥ, w)−ln
∑
ĥ∈H

exp φ̂(x, y, ĥ, w)

while the potential is given as φ̂(x, y, h, w) =
w>φ(x, y, h). Then we augment the learning task to
read as the constrained optimization problem

min
w

C

2
‖w‖22 +

∑
(x,y)∈D

¯̀(x, y, w) s.t. w ∈ C, (2)

with C denoting a convex set. Leaving the constraint
set aside, this program possesses the same difficulty
as the original task, i.e., we minimize a non-convex
objective operating on exponentially sized sets. Being
interested in the quality of duality based approxima-
tions we subsequently follow Schwing et al. (2012).

We first note that an upper-bound to the program
given in Eq. (2) is stated by the following cost function:

C

2
‖w‖22 +

∑
(x,y)

ln
∑
ŷ,ĥ

exp
(
φ̂(x, ŷ, ĥ, w)

)
−

−H(q(x,y))− Eq(x,y)
[φ̂(x, y, ĥ, w)]

)
,

with H denoting the entropy and E indicating com-
putation of the expectation. Importantly, the upper
bound allows to divide the program into two parts
which are iterated alternatingly when following the
CCCP procedure: on the one hand a minimization
w.r.t. the distribution q(x,y) ranging over the latent

space ĥ ∈ H for every sample (x, y), often referred to
as ‘latent variable prediction task.’ On the other hand
a minimization w.r.t. the weight vector w subject to
constraints C. Both problems remain intractable with-
out further modifications. However we notice that
minimization to find the distributions q(x,y) directly
follows (Schwing et al., 2012) and we can incorporate
their approximation without further modification.

Due to the additional constraint set it is the second
task which requires specific attention. The relevant

excerpt from the program given in Eq. (2) reads as
follows:

min
w∈C

∑
(x,y)∈D

ln
∑
ŷ,ĥ

expw>φ(x, ŷ, ĥ)− w>d+
C

2
‖w‖22.

(3)
We note that the vector of empirical means d ∈ RF
contains information from the observed variables as
well as information from the linearization of the con-
cave part. This task differs from the standard struc-
tured prediction program in an additional regulariza-
tion w.r.t. the constraint set C. Although assumed
to be convex subsequently, this additional regulariza-
tion makes the program more challenging to solve in
general. We subsequently show the approximations
required to obtain an efficient algorithm based on pro-
jected gradients. To this end we first state the dual
program of the task given in Eq. (3).

Claim 1 The dual program of the constrained struc-
tured prediction task (Eq. (3)) reads as

max
p(x,y)∈∆

∑
(x,y)∈D

H(p(x,y)(ŷ))+
C

2
‖PC [z]‖22 − Cz

>PC [z] ,

where we maximize the entropy H of distributions
p(x,y) restricted to the probability simplex ∆Y×H over
the complete data space. The projection of z =
1
C

(
d−

∑
(x,y),ŷ,ĥ p(x,y)(ŷ, ĥ)φ(x, ŷ, ĥ)

)
onto the con-

straint set C is denoted by PC [z] and d ∈ RF refers to
the vector of empirical means.

Proof: To prove this claim, we introduce a temporary
variable g(x, ŷ, ĥ) = w>φ(x, ŷ, ĥ) to decouple the soft-
max function from the norm minimization in Eq. (3).
Optimizing w.r.t. both, w and g, we obtain the entropy
as the conjugate dual of the soft-max. Minimizing the
norm subject to constraints yields the projection of
the difference between the empirical means vector d
and its estimate onto the constraint set C. We note
that C = RF yields the solution given by Hazan and
Urtasun (2010), which concludes the proof.

The aforementioned summation over exponentially
sized sets within the primal problem manifests itself
in distributions p(x,y) over respective simplexes ∆Y×H.
Instead of working with a full joint distribution over
the set of all possible solutions Y×H, we operate with
corresponding marginals b(x,y) for sample (x, y) and
respective marginalization constraints. The marginals
are chosen according to the variable dependence struc-
ture introduced within the feature vector φ(x, ŷ, ĥ).

More formally, let the k-th element of the feature vec-
tor be given by φk(x, y, h) =

∑
r∈Rk

φk,r(x, (y, h)r)
where r specifies a restriction of the function to
a subset of the observed and unobserved variables.
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Algorithm 1 (Structured Prediction with Constrained Parameter Spaces) Let φ̃(x,y),r((ŷ, ĥ)r) =∑
k:r∈Rk

wkφk,r(x, (ŷ, ĥ)r).
Repeat until convergence:

1. Update Lagrange multipliers: ∀(x, y), r, p ∈ P (r), (y, h)r

µ(x,y),p→r((y, h)r) = ln
∑

(y,h)p\(y,h)r

exp

φ̃(x,y),r((y, h)r)−
∑

p′∈P (p)

λ(x,y),p→p′((y, h)p′) +
∑

r′∈C(p)\r

λ(x,y),r′→p((y, h)r′)


λ(x,y),r→p((y, h)r)∝

1

1 + |P (r)|

φ̂(x,y),r((y, h)r) +
∑

p′∈P (r)

µ(x,y),p′→r((y, h)r)

− µ(x,y),p→r((y, h)r)

2. Perform a gradient step and project the result onto the constraint set C:

w ← PC [w − γ∇wf(λ,w)]

Figure 1: An algorithm for learning parameters of structured models within constrained parameter spaces.

The set of all restrictions for the k-th element of
the feature vector is referred to via Rk. All in all
we therefore consider the marginals b(x,y),r((y, h)r)
which are required to fulfill the marginalization con-
straints, i.e., we enforce them to be consistent amongst
each other. Importantly, this means that we ne-
glect the exponential number of constraints within the
marginal polytope by adopting its local approxima-
tion (Wainwright and Jordan, 2008). In addition to
usage of marginals we approximate the joint entropy
H(p(x,y)) ≈

∑
rH(b(x,y),r).

To obtain an approximated convex primal we intro-
duce Lagrange multipliers λ(x,y),r→p((y, h)r) for each
marginalization constraint that ties together two re-
strictions r and p. We obtain the approximated, con-
vex and constrained primal as follows:

min
w∈C,λ

∑
(x,y),r

ln
∑

(ŷ,ĥ)r

exp φ̂(x,y),r((ŷ, ĥ)r)− d>w +
C

2
‖w‖22 ,

(4)
where we denote the re-parameterized potential via

φ̂(x,y),r((ŷ, ĥ)r) =
∑

k:r∈Rk

wkφk,r(x, (ŷ, ĥ)r)

+
∑

p∈P (r)

λr→p((ŷ, ĥ)r)−
∑

c∈C(r)

λc→r((ŷ, ĥ)c).

The derivation follows (Hazan and Urtasun, 2010;
Schwing et al., 2012) and we recover the constraint
set C by computing the dual for the projection PC .
Intuitively we push energy λ between different restric-
tions such that we can find a weight vector w which
minimizes the objective subject to C.

This formulation differs from Hazan and Urtasun
(2010) in that the domain for the parameters w is
constrained by the convex set C. We proceed by it-
erating between updates for the Lagrange multipliers

λ and the model parameters w which guarantees con-
vergence for the convex cost function. Note that op-
timization of the program given in Eq. (4) w.r.t. λ is
unconstrained. Therefore we follow a block-coordinate
descent scheme.

Let f(w, λ) denote the cost function of the program
given in Eq. (4). Fixing λ, f is a smooth, convex but
non-linear function in w and a well-known method to
address the constraint minimization of f w.r.t. w is
the projected gradient algorithm (Rockafellar, 1970).
We use the gradient of the smooth cost-function as a
descent direction, perform a step and project the result
onto the constraint set C.

It is important to note that a single projection step
is sufficient for convergence guarantees since block-
coordinate descent methods only require to decrease
the cost function at every iteration which is ensured
after a single projection. We summarize this observa-
tion in the following claim.

Claim 2 The algorithm outlined in Fig. 1 guarantees
convergence of the constrained structured prediction
program given in Eq. (4).

Proof: Strong convexity admits block-coordinate de-
scent updates (Tseng, 1993), i.e., iterating between
updates for weights w and Lagrange multipliers λ. The
requirement of decreasing the cost function is met for
the updates w.r.t. λ and also ensured by a single pro-
jection of w onto C, which consequently proves the
claim.

Combining the structured prediction algorithm out-
lined in Fig. 1 with the ‘latent variable prediction task’
we obtain the algorithm given in Fig. 2 which we re-
fer to as constrained structured prediction with latent
variables.
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Constrained structured prediction with la-
tent variables
Repeat until convergence:

1. Solve the approximate ‘latent variable predic-
tion’ until convergence and update the empiri-
cal means d.

2. Perform a single iteration of ‘constrained struc-
tured prediction’ as detailed in Fig. 1.

Figure 2: Algorithm for constrained structured predic-
tion with latent variables.

4 EXPERIMENTAL EVALUATION

We evaluate our approach in three real data exper-
iments. We compare the prediction accuracy of our
learning method with and without constraints to pre-
vious work employing parameters w chosen by ex-
perts (Käser et al., 2012) and to work applying HMMs
(Yudelson et al., 2013).

Data We utilize input logs from the computer-
based adaptive training environment Calcularis (Käser
et al., 2013) which is a software for children with de-
velopmental dyscalculia (von Aster and Shalev, 2007).
Children are taught different number representations
as well as arithmetic operations. The student model
used in Calcularis consists of 100 different mathemat-
ical skills allowing adaptation to the child’s difficulty
level (Käser et al., 2012). To improve the kids learn-
ing efficiency, an accurate prediction of the modeled
mathematical knowledge is essential. This is particu-
larly important for children with learning disabilities,
as their heterogeneity requires a high grade of individ-
ualization. Moreover, performance prediction in such
applications is not an easy task as available data is
noisy and sparse, leading to many latent variables.

The data was collected in a multi-center user study in
Germany and Switzerland. From the 126 participat-
ing children (87 females, 39 males), 57 were diagnosed
as having developmental dyscalculia (assessed by stan-
dardized tests at the beginning of the study), and 69
were control children (also assessed by standardized
tests). The children attended 2nd to 5th grade of el-
ementary school (age of diagnosed children: 8.61 ±
0.86; age of control children: 8.75 ± 0.85; p = 0.36)
and were German speaking. The input logs from the
126 participants form our data samples.

Experimental conditions The prediction accu-
racy is computed as follows: given a set of observa-
tions for the Bayesian network, we predict the state
of the unobserved nodes and provide the root mean
squared error (RMSE), the L1 norm (L1) and the L2
norm (L2) between the true state and the predicted
probability for that state. Furthermore, we also com-

w0

w ,w1 2

w ,w3 4

w ,...,w5 8

w ,w9 10 w ,w9 10

sO sO sO

sR sR sR

Figure 3: Structure of the graphical model used for
the number understanding experiment.

pute the classification error (CE, i.e., frequency of pre-
dicted state not equaling true state) and the area un-
der the ROC curve (AUC). When working with prob-
abilities, appropriate calibration is essential (Gneiting
et al., 2007). We assess the calibration of our models
by building reliability diagrams and computing the av-
erage calibration distance (CA) between true and pre-
dicted outcome per bin. If not noted otherwise, convex
learning stops when the improvement of the primal is
less than 10−9 or the maximum number of iterations
exceeds 500. In case of constraints the stopping crite-
rion is met if the primal improves by less than 5 · 10−6

or 300 iterations are exceeded. For inference, we limit
the number of message passing iterations to 100.

Features The feature vector φ for the Bayesian
network models are specified following Sec. 2. Con-
sider the conditional probability table (CPT) describ-
ing the relationship between two skills ha and hb.
The entries of this table are defined using two pa-
rameters p1 and p2, setting p1 = p(hb = 1 | ha =
0) = 1 − p(hb = 0 | ha = 0) and p2 = p(hb = 1 |
ha = 1) = 1 − p(hb = 1 | ha = 0). As shown in
Sec. 2, let p(hb | ha = 0) ∝ expwb,0(1 − 2hb) and
p(hb | ha = 1) ∝ expwb,1(1 − 2hb), which leads to
the feature function φ(hb) = 1 − 2hb. When using a
ternary conditional probability distribution including
three skills ha, hb and hc, we obtain four degrees of
freedom: We define p1 = p(hc = 1 | ha = 0, hb = 0) =
1 − p(hc = 0 | ha = 0, hb = 0) ∝ expwc,0,0(1 − 2hc)
and similarly specify p2, p3 and p4. Generally, we need
2n−1 parameters to specify a CPT including n skills.

Number understanding In a first experiment, we
look at two skills taught in the number range from 0
to 100. Fig. 3 illustrates the model, where nodes col-
ored in red represent knowledge of the concept of ordi-
nal number understanding (sO), i.e., understanding a
number as a position in a sequence. There exists no ex-
ercise for this skill, hence no observations are available.
The concept of relative number understanding (sR) is
denoted by the variables highlighted in blue. Relative
number understanding denotes the ability to under-
stand a number as a difference between two numbers.



Computational Education using Latent Structured Prediction

Expert HMM C = ∅ C = C1 C = C2 C = C3 C = C4
RMSE 0.464 0.388 0.393 0.382 0.379 0.374 0.373

L1 0.440 0.308 0.265 0.299 0.281 0.283 0.284

L2 0.227 0.170 0.184 0.163 0.163 0.154 0.154

CE 0.346 0.213 0.213 0.213 0.213 0.202 0.202

AUC 0.625 0.500 0.500 0.606 0.591 0.615 0.615

CA 0.432 0.073 0.135 0.072 0.084 0.052 0.054

Table 1: Different error measures for number understanding. Comparison of unconstrained and constrained
conditions to previous work using a domain expert (Käser et al., 2012) or an HMM (Yudelson et al., 2013).

We cannot directly observe this ability, but the results
of an exercise associated with it. These results are re-
ferred to by rectangles which denote the outcome of a
particular “task”. Every column in Fig. 3 represents a
time-step and the depicted graphical model is an ex-
tract of the model used in the Calcularis software. For
this experiment, we used a maximum of 50 time-steps
(task outcomes) per child (mean: 22.16 ± 9.98). One
child with no observations at skill sR was excluded
from the analysis.

The model representing this task employs F = 11 pa-
rameters w to specify the conditional probabilities that
define the network illustrated in Fig. 3. Subsequently,
we describe the domain knowledge introduced to con-
strain the parameters and the meaning of the elements
of the weight vector w. Parameters w9 and w10 are
associated with the so called ‘guess’ (probability of
getting a task right without knowing the associated
skill) and ‘slip’ (getting the task wrong despite having
the associated skill) probabilities which are commonly
assumed to be lower than 0.3 (Corbett and Ander-
son, 1994). This upper bound translates to the con-
straints w9 ≥ 0.4236 and w10 ≤ −0.4236. Further-
more, parameters w5 and w8 are associated with learn-
ing (probability that a skill is learnt from one time step
to the other) and forgetting (probability of forgetting
a previously learnt skill). We limit these probabili-
ties to be lower than 0.3, yielding w5 ≥ 0.4236 and
w8 ≤ −0.4236. The aforementioned constraints define
the set C1.

We refer to set C2 as the constraints within the set
C1, augmented by the following restrictions. Since w3

and w4 are also related to learning and forgetting, we
utilize constraints identical to those for w5 and w8:
w3 ≥ 0.4236 and w4 ≤ −0.4236. Similarly, we de-
fine w6 ≥ 0.4236 and w7 ≤ −0.4236. In addition,
the hierarchical skill model of Calcularis assumes that
the number understanding ability sO is a prerequisite
for relative number understanding sR (von Aster and
Shalev, 2007). Hence we restrict w1 and w2 by as-
suming that the probability of knowing sR given sO is
larger than 0.7, while we let the probability of knowing
sR despite not knowing sO be smaller than 0.3, which

yields w1 ≥ 0.4236 and w2 ≤ −0.4236. Configurations
C3 and C4 constrain the same parameters as C1 and C2,
but are more restrictive by replacing 0.3 and 0.7 with
0.2 and 0.8.

After learning the model parameters using only the
observed data, prediction is performed as follows: we
assume “Task 1” to be given and predict the outcome
of “Task 2”. Afterwards we employ results from both
“Task 1” and “Task 2” to predict the outcome of “Task
3” and continue to predict “Task k,” k ∈ {4, 5, . . . , 50}
assuming the preceding task outcomes to be given.

The performance results provided in Tab. 1 are com-
puted using 10-fold cross validation. The most accu-
rate results (per error measure) are marked in bold.
We observe our constrained learning approach to out-
perform previous methods for most error metrics. Also
the unconstrained optimization C = ∅ yields good pre-
diction results with the following parameter values:
w1, ..., w8 are set to 0, which results in uniform dis-
tributions for the according CPTs. The parameters
w9 and w10 are set to values smaller than -1 (over
all folds). The model therefore predicts a correct out-
come with a probability higher than 0.88, independent
of previous observations and the state of the hidden
nodes. As the investigated skill was easy to solve for
most children, this model exhibits a high prediction
accuracy. It is, however, not interpretable with re-
spect to human learning. The constrained models are
generally well calibration. Note that the expert pa-
rameters generally have worse calibration. This result
is not unexpected, as the expert parameters are not fit
to the data.

Number representation In the second experi-
ment, we investigate number representation tasks in
the number range from 0 to 100. The graphical model
is again an extract from the student model of Cal-
cularis and is illustrated in Fig. 4. Nodes colored in
green represent knowledge of the Arabic notation sys-
tem (sA). There exists no exercise for this skill, hence
no observations are available. The ability to assign a
number to an interval (sS) is denoted by red circles.
The task associated with this skill is to guess a num-
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Expert HMM C = ∅ C = C1 C = C2 C = C3 C = C4
RMSE 0.541 0.456 0.474 0.445 0.448 0.439 0.439

L1 0.513 0.418 0.464 0.425 0.431 0.412 0.410

L2 0.300 0.215 0.227 0.201 0.202 0.195 0.195

CE 0.533 0.327 0.324 0.298 0.274 0.281 0.280

AUC 0.532 0.559 0.445 0.676 0.691 0.705 0.701

CA 0.232 0.101 0.092 0.086 0.086 0.077 0.051

Table 2: Different error measures for number representation. Comparison of different configurations to previous
work using a domain expert (Käser et al., 2012) or an HMM (Yudelson et al., 2013).
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Figure 4: Structure of the graphical model used for
the number representation experiment.

ber in as few steps as possible. After each guess, the
child is told if the searched number is bigger or smaller
than the guessed number. The ability to indicate the
position of a number on a number line (sL) is denoted
by the variables highlighted in blue. This ability is
a very important step in developing the mental num-
ber line representation, which is essential for number
processing (von Aster and Shalev, 2007). Again, we
used a maximum of 50 time-steps (task outcomes) per
child (mean: 21.40 ± 10.63). For the second model,
we employ F = 22 parameters which specify the con-
ditional probabilities of the graphical model displayed
in Fig. 4.

To constrain the parameters, we make use of the do-
main knowledge introduced in the first experiment.
To obtain the first constrained configuration C1, we
introduce the following constraints: wi ≥ 0.4236
if i ∈ {6, 8, 10, 18, 20} and wi ≤ −0.4236 if i ∈
{7, 9, 17, 19, 21}. For the second configuration (C2),
we augment the constraints of set C1 with the new
constraints wi ≥ 0.4236 ∀i ∈ {2, 3, 4, 11, 12, 13} and
wi ≤ −0.4236 ∀i ∈ {5, 14, 15, 16}. Again, configura-
tions C3 and C4 constrain the same parameters as C1
and C2, but are more restrictive by replacing 0.4236
and −0.4236 with 0.6913 and −0.6913.

Prediction is done successively for each time-step as
described in the first experiment and the performance
results given in Tab. 2 are again computed using 10-
fold cross validation. The proposed constraints lead
to improvement of all error measurements. We par-
ticularly highlight the decrease of the classification
error by 5.3% (CEC2 = 0.274) compared to previ-
ous work (CECHMM

= 0.327) (Yudelson et al., 2013).
Furthermore, improvements in calibration are large
(CAHMM = 0.101, CEC4

= 0.051).

Subtraction The four skills investigated in this ex-
periment are different subtraction skills in the number
range from 0 to 100. The graphical model, which is
again an extract of the student model used in Calcu-
laris, is illustrated in Fig. 5. The nodes highlighted
with green color (s1) in Fig. 5 denote a subtrac-
tion task without borrowing and a single-digit num-
ber as the subtrahend (e.g ., 35− 2 =?) while nodes in
blue color (s3) also represent a subtraction task with-
out borrowing, but with a two-digit subtrahend (e.g .,
35 − 12 =?). Purple nodes (s2) denote subtraction
with borrowing and a single-digit subtrahend (e.g .,
35 − 6 =?) and the red nodes (s4) denote the ability
to do subtraction with borrowing and two two-digit
numbers (e.g ., 35 − 6 =?). The rectangles denote re-
sults of an exercise associated with the skills s2, s3 and
s4. Again, we used a maximum of 50 time-steps (task
outcomes) per child (mean: 43.59 ± 10.47). To spec-
ify the conditional probabilities of the graphical model
(Fig. 5), we employ F = 33 parameters.

The constrained configurations for this experiment
follow the domain knowledge introduced in the
first two experiments. More specifically, C1 de-
notes the following constraints: wi ≥ 0.4236 ∀i ∈
{9, 11, 15, 19, 27, 29, 31} while wi ≤ −0.4236 ∀i ∈
{10, 14, 18, 26, 28, 30, 32}. The second configuration
C2 augments the set C1 by adding wi ≥ 0.4236
∀i ∈ {1, 3, 5, 6, 7, 12, 16, 20, 21, 22} and wi ≤ −0.4236
∀i ∈ {2, 4, 8, 13, 17, 23, 24, 25}. Again, configurations
C3 and C4 constrain the same parameters as C1 and
C2, but are more restrictive by replacing 0.4236 and
−0.4236 with 0.6913 and −0.6913.
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Figure 5: Structure of the graphical model used for the subtraction experiment.

Expert HMM C = ∅ C = C1 C = C2 C = C3 C = C4
RMSE 0.489 0.467 0.469 0.453 0.436 0.446 0.433

L1 0.460 0.422 0.445 0.390 0.390 0.391 0.392

L2 0.248 0.224 0.224 0.214 0.195 0.205 0.192

CE 0.398 0.327 0.325 0.313 0.287 0.302 0.268

AUC 0.555 0.511 0.561 0.641 0.674 0.621 0.682

CA 0.110 0.035 0.047 0.098 0.035 0.070 0.029

Table 3: Different error measures for subtraction. Comparison of different configurations to previous work using
a domain expert (Käser et al., 2012) or an HMM (Yudelson et al., 2013).

Prediction is done as described in the first experiment
and the performance results provided in Tab. 3 are
again computed using 10-fold cross validation. We ob-
serve again significant improvements in all error mea-
surements. We highlight the improvement of the clas-
sification error by 5.9% when learning our computa-
tional education model within a constrained param-
eter space (CEHMM = 0.327, CEC4

= 0.268). The
constrained models are again well calibrated.

5 DISCUSSION

Our results demonstrate that introducing domain
knowledge in the form of parameter constraints has
a two-fold benefit. On one hand, the introduced pa-
rameter constraints guarantee an interpretable model.
On the other hand, the proposed restrictions lead to
improvement of the error metrics. Introducing restric-
tions on the parameter space is particularly beneficial
for more complex models as well as for more difficult
skills. For difficult skills where children change from
the unlearnt to the learnt state after some training
time, the unconstrained optimization converges to a
solution closed to a uniform distribution (of correct
and wrong outcomes), while the introduced domain
knowledge enables more precise modeling of learning.

Compared to the HMMs used in previous work (Par-
dos and Heffernan, 2010a; Wang and Heffernan, 2012;

Wang and Beck, 2013; Yudelson et al., 2013) our
Bayesian network models are able to specify the de-
pendencies between the different skills allowing a more
precise description of the learning domain. Although
learning and inference becomes more complex when in-
troducing loopy parameterizations, our constraint op-
timization outperforms previous work (Yudelson et al.,
2013) on prediction accuracy and also improve calibra-
tion.

6 CONCLUSION

We showed that constraining the parameter space of
convex structured prediction methods maintains the
design of efficient algorithms, i.e., interleaving of mes-
sage passing updates and parameter updates. Addi-
tionally we illustrated on real data from a study of chil-
dren having dyscalculia that prediction performance
and calibration improve when learning within the con-
strained parameter space. Furthermore, our algorithm
guarantees interpretable models. In the future we plan
to increase the size of our models to capture more
statistics of its users.
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