
Fast and Stable Color Balancing for Images and Augmented Reality

Thomas Oskam 1,2 Alexander Hornung 1 Robert W. Sumner 1 Markus Gross 1,2

1 Disney Research Zurich 2 ETH Zurich

Abstract—This paper addresses the problem of globally
balancing colors between images. The input to our algorithm is
a sparse set of desired color correspondences between a source
and a target image. The global color space transformation
problem is then solved by computing a smooth vector field
in CIE Lab color space that maps the gamut of the source to
that of the target. We employ normalized radial basis functions
for which we compute optimized shape parameters based on
the input images, allowing for more faithful and flexible color
matching compared to existing RBF-, regression- or histogram-
based techniques. Furthermore, we show how the basic per-
image matching can be efficiently and robustly extended to
the temporal domain using RANSAC-based correspondence
classification. Besides interactive color balancing for images,
these properties render our method extremely useful for
automatic, consistent embedding of synthetic graphics in video,
as required by applications such as augmented reality.

I. INTRODUCTION

Pablo Picasso highlighted the importance of color in

painting with the famous quote, “They’ll sell you thousands
of greens. Veronese green and emerald green and cadmium
green and any sort of green you like; but that particular
green, never.” Today, the same struggle to capture the perfect

nuance of color lives on in digital photography and image-

based applications. The colors that are ultimately recorded

by both consumer-grade and high-end digital cameras de-

pend on a plethora of factors and are influenced by complex

hardware and software processing algorithms, making the

precise color quality of captured images difficult to predict

and control. As a result, one generally has to rely on post-

processing algorithms to fix color-related issues.

This problem is generally known as color balancing or

color grading, and plays a central role in all areas involving

capturing, processing and displaying image data. In digi-

tal photography and filmmaking, specifically trained artists

work hard to achieve consistent colors for images captured

with different cameras, often under varying conditions and

even for different scenes. With today’s tools this process

requires considerable, cost-intensive manual efforts. Similar

issues arise in augmented reality applications, where com-

puter generated graphics must be embedded seamlessly and

in real-time into a video stream. Here, achieving consis-

tent colors is critical but highly challenging, since white-

balance, shutter time, gamma correction, and other factors

may continually change during acquisition and cannot be

perfectly controlled or addressed through calibration alone.

Source Image Color BalancedTarget Image

Tracked Colors balancing Augmented Image

Rendered Objects

Figure 1. Two applications of our color balancing algorithm. Top: an
underexposed image is balanced using only three user selected correspon-
dences to a target image. Bottom: our extension for temporally stable color
balancing enables seamless compositing in augmented reality applications
by using known colors in the scene as constraints.

Therefore, an efficient correction and adaptation of colors

that is agnostic to the underlying capture hardware is highly

desirable in such AR-related applications. However, aside

for a few preliminary efforts [1], [2] practically applicable

solutions to this problem are yet to be developed.

This paper contributes a real-time color balancing algo-

rithm that is able to globally adapt the colors of a source

image to match the look of a target image, requiring only

a sparse set of color correspondences. Fundamentally, our

approach is based on radial basis function (RBF) interpo-

lation. However, we show that, for an optimal RBF-based

color matching, it is crucial to optimize for the shape of the

employed basis functions. As a second main contribution,

we then extend the per-image computation to be temporally

consistent, enabling the application of the basic balancing

mechanism in video-based applications such as augmented

reality. A key component to the success of this system is a

reliable RANSAC-based classification algorithm that selects

a temporally stable set of correspondences used for the basic

color balancing. We present a fast GPU-assisted implementa-

tion of our color balancing algorithm that achieves run times

of 1ms and below on real-world applications. In this paper

and the accompanying video, we show results for interactive

2012 Second Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization & Transmission

978-0-7695-4873-9/12 $26.00 © 2012 IEEE

DOI 10.1109/3DIMPVT.2012.36

49

color editing of images as well as for improved visual quality

and consistency of video and computer generated images in

augmented reality applications.

II. RELATED WORK

In this section, we discuss related work on histogram

matching, user controlled color transfer, and color calibra-

tion.

Statistics and Histogram Matching: This is the process

of transferring the color distribution statistics from one

image to another image, pioneered by Reinhard et al. [3].

They proposed computing the mean and standard deviation

of the color distribution in the color space. Then, by scaling

and translating the parameters onto the ones of the target

image, they achieve automatic color transfer. The approach

has been applied to histograms and extended to achieve a

mapping in different color spaces [4], minimum cost linear

mapping [5], and per-region execution of the algorithm [6].

Further extensions have been proposed that optimize the

images after matching to avoid discontinuities in color

gradients [7], [8].

While statistics and histogram matching methods for

automatic color transfer can produce very appealing results,

they provide only limited control. Direct control over color

changes is often required in image editing and difficult to

achieve with these methods.

Color transfer with user interaction: Abadpour et al. [9]

first proposed an image color transfer algorithm with user

interaction. In their work, the user is allowed to denote

corresponding regions between images. Colors are then

locally matched using fuzzy principal component analysis.

Other methods have been proposed that aid the user in local

color matching [10], [11]. The user is allowed to select

a local region, and the actions are propagated throughout

adjacent parts of the image. An et al. [12] propose a scribble-

based framework for color transfer between images. Fast

and interactive methods for editing images and video have

also been proposed. An et al. [13] propagate local edits

by assisting a user with iteratively refining rough edits

to areas of spatial and appearance similarity. Farbman et

al. [14] propose the use of diffusion maps to propagate

image editing information. In these approaches the impact

of user controlled edits is typically targeted towards local

color changes. Our work, in contrast, targets global color

balancing using only sparse and possibly incomplete input.

Li et al. [15] provide an approach for image and video

editing with instant results. They employ radial basis func-

tion interpolation in a feature space to propagate sparse edits

locally. In contrast to this work, we are formulating the

problem as a global color space transformation independent

from the image space and we optimize the shape of basis

functions to achieve color balancing behavior found in

example images. We show that the basis function used by

Li et al. is suboptimal for the purpose of global image

balancing.

Color calibration and balancing: Color calibration is

the process of computing the color distribution function of a

camera to allow recorded images to be consistently colored.

Adams et al. [16] gives an overview of standard camera

calibration techniques using linear transformations. Usually,

a 3x3 matrix is computed using regression. A related area is

color consistency. Humans perceive colors to be consistent

even under different lighting conditions. This property is not

available for digital images. Colors have different numerical

values under different illuminations. In order to counter this

issue, different algorithms have been proposed. An overview

over different algorithms is provided by Argawal et al. [17]

and Cohen [18]. In contrast to our approach, many of

these methods do not apply additional information such as

correspondences or known colors in a scene to balance the

images. Therefore, these methods are less interactive and

less robust when applied to videos.

There is also significant work that enhances the quality

of imagery using a database of example images [19], [20],

[21], [22]. The work of Yang et al. [23] achieve color com-

pensation by replicating the non-linear relationship between

the camera color and luminance. Wang et al. [24] transfer

color and tone style of expert photographed images onto

the images from cheap cameras by learning the complex

transformation encoded in local descriptors. Recent work of

Lin et al. [25] revisits the radiometric calibration of cameras

by investigating 10,000 images from over 30 cameras and

introduces a new imaging model for computing the color

response curves. Our parameter optimization of the radial

basis functions is also based on extracting image properties

form data sets. However, we design our functions to be

sparsely sampled so that they provide appealing results when

interpolated in order to considerably increase performance.

Color Balancing in Augmented Reality: Only recently

there has been research in improving the compositing of

images in augmented reality. Klein et al. [1] examine and

reproduce several image degradation effects of digital cam-

eras to increase the realism of augmentation. However, they

are not considering color shifts due to camera parameter

changes. The works of Knecht et al. [2] propose to balance

rendered images using colors in the scene. However, they

are applying a linear regression model and do not correct

for corrupted colors due to occlusions or reflections.

III. VECTOR SPACE COLOR BALANCING

Given a sparse set of color correspondences, the goal is to

transform the color gamut of an image such, that (i) colors

that have references get as close as possible to that point in

the color space, and (ii) colors, for which no references are

available, are transformed in a plausible way.

We interpret the given color correspondences as vectors

in the color space. In order to produce a transformation of

50

Image Gamut +

Correspondences

Smooth

Vector Field

Transformed

Image Gamut

Figure 2. The idea of vector space color balancing. On the left, the source
colors are shown in black and the corresponding target colors in white.
The idea is to interpret all correspondences as vectors in color space and
smoothly extend them to a vector field with which the gamut of the image is
transformed. This procedure creates a continuous and flexible color transfer
function.

the gamut, we compute a vector field around the reference

vectors that achieves the aforementioned goals. The concept

is demonstrated in Figure 2. The correspondence vectors

themselves represent constraints. We use normalized radial

basis function interpolation that propagates these constraints

to the rest of the color space. Section III-A explains how

this is performed. The selection of basis functions, however,

influences how the correspondence vectors are propagated

through the color space and ultimately how colors without

constraints are balanced. Therefore, we propose optimizing

the shape of a basis function based on example images. This

is discussed in section III-B.

A. Vector Field Computation

For a given pair of colors (ci, di) in the three-dimensional

CIE Lab space, we define the ci as support points, and the

vectors vi = ||di− ci|| as data values. For each vector vi, a

basis function φi is provided that describes the weight with

which the vector is distributed in space. For each new point

e in the color space, an according translation vector v(e) is

computed as a normalized sum of the weighted φi

v(e) =
1∑n

i=1 φi(e)

n∑

i=1

φi(e)wi. (1)

The summation of the support functions allows an inde-

pendent evaluation of each point in the vector field, which

suits a completely parallel implementation for each pixel in

an image. The individual weights wi allow the treatment of

the φi as radial basis functions (RBF). RBF interpolation

performs a least squares minimization on the overlapping

support between the individual φi by choosing weights wi

such, that the squared difference between the data vectors

vi and the weighted sum of the basis functions at ci is

minimized in the least squares sense

argmin
wi

(||vi − v(ci)||2). (2)

This results in a system of equations v = Φw per

color dimension, where the matrix Φ is the same in all

three systems and contains, at each position (i, j), the

norm. Shepard
Gaussian
inv. quadric

avg. function
deviation

1

0
0 30Color Space Distance

Figure 3. Plots of the basis functions we consider for our color transfer. On
the left, the three functions are shown in relative scale. Note their different
fall-off behaviors. On the right, the curves are shown with optimized shape
parameters in their absolute scale. The optimized curves significantly differ
in their final spread and variation.

normalized support of all cj seen at the interpolation point

ci. The weight vectors wi can be composed by inverting Φ
and assembling the individual components from the three

systems of equations.

Conflicting constraints of two source colors ci and cj
can cause the matrix Φ to become near-singular. This

causes components of the resulting wi to become negative.

Negative values create an inverted distribution of the con-

straint vectors vi in the color space an produce undesired

artifacts [15]. We avoid this problem by clustering support

points that lie within the limit of perceivable distance (1.0 in

the CIE Lab space). Additionally, we select basis functions

that have a small spread to avoid large overlapping support

between constraints. This keeps the matrix Φ from degen-

erating. In Section III-B, we discuss how to optimize basis

functions and show that our normalized Shepard function

combines optimal and robust interpolation results with a very

small spread, in contrast to the generally utilized Gaussian

function.

B. Choice of Basis Functions

The choice of an appropriate basis function both influ-

ences the global impact of color constraints and the stability

of the interpolation [15]. Using RBF interpolation, we can

make sure that the effect of overlapping support between

the basis functions is minimized. However, it is still unclear

which functions should be used for interpolation and how to

select their parameters. To find out how to best interpolate

colors given a sparse set of correspondences, we test the

following three functions with different fall-off behavior

over distance (see Figure 3).

normalized Shepard si(cj) = (1 + ||ci − cj ||)−ε

Gaussian gi(cj) = e−(ε||ci−cj ||2)

inverse quadric qi(cj) =
1−α

1+(ε||ci−cj ||)2 + α

The normalized version of the Shepard function has the

quickest fall-off. It gets surpassed after a while by the

Gaussian function that decreases exponentially. The constant

value we add to the inverse quadric function (α = 0.01 in

our experiments) guarantees a minimum value in one of our

51

10

E
rr

o
r

ε

Exposure Time Gain Color Intensity

5

norm. Shepard
Gaussian
inverse quadric

Figure 4. Average reconstruction error of the considered basis functions while interpolating 50% of the color checker fields under changing camera
parameters. The error is shown as a function of the ε-values for the normalized Shepard (red), the Gaussian (green), and the inverse quadric (blue) basis
functions. The plots show that the ε value significantly influences the result.

functions to distances at infinity.

Each of the functions is parameterized with a variable ε
that influences the width of the function spread. This param-

eter allows to find the optimal reconstruction capability of

each function by optimizing for ε.

To compare the performance of each parameterized func-

tion on reconstructing colors, we first create data sets by

filming a color calibration checker (Digital ColorChecker

SG in our experiments). During video capture, internal

camera parameters (e.g. exposure or contrast) are changed

individually so that the global color changes are part of the

data.

In each data set, one frame with default camera settings

is selected as the base frame. In this frame, 50% of the

color fields are selected at random, and used as data points.

The corresponding color fields in all other frames in the

data set are used as references. The score of a function

(with a specific ε-value) is now computed as the average

reconstruction error of the other 50% (not referenced) colors

in the base frame across all frames of the data set. Figure

4 shows plots from some of our tests. The error is shown

for the normalized Shepard (red), the Gaussian (green), and

the inverse quadric (blue) functions for an increasing ε-
value. The plots are shown with differently scaled ε for each

function, but with the same scaling across all tests.

For each of the three functions there is an optimal ε.
This surprising result shows that there is a clear correlation

Target Image Cool

White Bal.

1 Color

Ref.

2 Color

Ref.

4 Color

Ref.

6 Color

Ref.

Figure 5. Example of the global impact of our color balancing using only
a few correspondences. The target image on the left is reconstructed using
a photograph of the same scene with a different white balance as source
image. The top row shows the successive addition of references (red dots).
The images in the bottom row visualize the difference in CIE Lab space
between the balanced image and the original.

between the spread of a basis function and its capability

of reconstructing global color changes. Second, across all

tests, the magnitude of the optimal ε is in a similar range.

The ε-values we determined though our tests are ε = 3.7975
(σ = 0.5912) for the normalized Shepard, ε = 0.0846 (σ =
0.0289) for the Gaussian, and ε = 0.0690 (σ = 0.0289) for

the inverse quadric function, where σ-values are the standard

deviations.

The shape of the optimized functions (and their deviation

due to σ as dashed curves) are shown Figure 3 on the

right. Our normalized version of the Shepard function clearly

shows the smallest spread of all three functions, rendering

it the most stable function for RBF interpolation. Note,

that the Gaussian function has significantly wider spread

and also a much higher variance, making it a suboptimal

choice for global color balancing. The impact on the number

of references using our normalized Shepard function with

optimal ε for global color balancing is demonstrated in

Figure 5. With only a few correspondences, the error in the

CIE Lab space is reduced considerably.

IV. TEMPORAL COLOR TRACKING

A typical scenario where the permanent update of the

color balance improves the visual quality is augmented

reality, where a synthetic rendering should be embedded in

a seamless manner into a video stream. In order to tackle

this problem, we propose to use known color patches in

the scene (See Figure 1). If these colors can be robustly

tracked over time, they can be used as color references for

their supposed values. These references then automatically

balance rendered images to the video footage, adapting the

renderings as the color of the video frames change due to

camera adjustments.

We base our color tracking on the observation that desired

color changes in the video stream are global. These changes

are due to the camera automatically adjusting internal pa-

rameters such as exposure or gain. The color patches in

the scene that receive these color changes will be used

as constraints for the balancing of their known unbalanced

values. However, due to occlusions or specular reflections,

some of the tracked color patches will be corrupt. These

color distortions (e.g. occlusions, reflections) happen locally.

This fact can be utilized to remove them as outliers.

52

Frame

Tracked Colors

Reference Colors

Detect Outlier Reconstruct Colors

Last Valid Colors

Create References

Target Colors

Source Colors

Digital Image

RANSAC (Affine Model)

Figure 6. Overview of our stable color tracking pipeline. First, color values are extracted from the video frame and corrupt ones are rejected using
RANSAC and temporal coherence. Then, missing colors are added using information from the previous frames. Finally, the stable color list is combined
with colors from a digital image to create the transfer constraints that can be used for balanced augmentation of rendered objects.

Figure 6 gives an overview over our robust color tracking

pipeline. For each frame, the following steps are performed:

1 Extract Colors. The first step is to extract the colors

di from the video frame. The position tracking provides the

positions in the image where the target colors are found. In

our implementation we use ARToolKit marker tracking [26],

but any other position tracking solution can be used as

well. To reduce per-pixel noise we perform a neighborhood

averaging over a small window (usually 7 by 7).

2 Detect Outlier. To detect corrupted colors we can

fit a global model between the extracted di and a set of

reference colors. These reference colors ri can be taken from

the digital image of the marker or extracted from the first

frames of the video in a pre-processing step. In order to

keep the number of false positives low a conservative model

should be fitted between the ci and ri. We chose the affine

transformation model ci = A ri + t [16], which can be

computed analytically and avoids over fitting to corrupted

colors.

Outlier in the scene colors di can now be detected by

fitting the affine model using the random sample consensus

algorithm (RANSAC) [27]. This first step allows removing

most of the corrupted colors. However, false positives may

slip though this outlier detection. In order to further increase

the robustness of the tracking, we separate the remaining

inliers into two groups. Trusted inliers are colors that have

not been detected as outliers for more than κt frames. These

colors are used as valid target colors. Inlier colors that have

been detected as outlier in one of the past κt frames may

be false positives. These colors are also treated as outlier. In

our experiments we found that false positives rarely appear

for more than two frames. Therefore, in our experiments,

we mostly used κt = 3.

3 Reconstruct Colors. At this point, corrupted colors

have been removed from the list of di. Additionally, the

risk of false positives has been decreased by taking temporal

consistency into account. Now, in order to maximize the

amount of colors available for color balancing, we can use

the last valid colors of each tracked point from the previous

frames. These colors are stored when a tracked value is

regarded as trusted inlier (being not an outlier for more than

κt frames). Colors values, that are suddenly corrupt due to

occlusions or specular reflections can then be replaced by an

updated version of their last valid value. The update of these

last valid colors is performed by applying the global affine

transformation performed by all trusted inlier colors since

the last frame. In our implementation, we perform this color

reconstruction only for outlier that have been inliers for more

than κc frames. This removes colors that were only detected

as inliers for a short period and increases the robustness. We

call these colors comeback points. In our implementation we

have set κc = 10.

4 Create References. The final color references (ci, di)
for the balancing of rendered objects can now be created.

For all di, that are either trusted inlier or a comeback points,

the corresponding color ci can be extracted from the digital

image of the marker. The constraints (ci, di) now describe

the color transfer function from rendered footage to the

current video frame color space.

With our fast global color balancing for sparse color

correspondences we are able to adapt the colors to fit to a

target image. With our robust color tracking, we can extend

this into the temporal domain. Using a known marker in

the scene (e.g. the cover of a book) we can balance newly

rendered footage to augment the video and increase the

realism of augmented reality applications.

V. IMPLEMENTATION

Our color balancing algorithm can be implemented by

simply extending any given fragment shader. The reference

colors ci and weights wi are transferred to the GPU as

texture data. The matrix inversion is calculated beforehand

on the CPU as it only needs to be performed once. The GPU

fragment shader algorithm is described in Algorithm 1.

First, the original color e of the pixel is determined

(line 1). The pixel color is the result of the given shading

algorithm. This color is then transformed to CIE Lab space

(line 2). Then, the variables ve and se are initialized (line 3

& 4). They are used to compute intermediate results of the

transformation vector computation. Now, a loop is performed

n-times, which is the number of color correspondences.

In each loop, first, the color ci and weight vector wi

are acquired through texture lookup (line 6). Then, the

function φ is applied using the current color eLab and the

53

support color ci (line 7). This gives the function value r,

which is used to add the current weight wi to ve (line 8).

Additionally, the sum of all the function values r is stored in

se (line 9), so that after the loop the transformation vector ve

can be normalized and used to translate the original pixel

color in CIE Lab space (line 11). The final color is then

transformed back into RGB space and returned to the frame

buffer (line 12).

0.05

1.30

5 10 20 40
References

T
im

e
 [

m
s]

Figure 7. The performance
of our implementation. The
green function shows the
run-time for the color bal-
ancing on the GPU, the blue
function the time to solve
the RBF equation system on
the CPU.

We have implemented the

color balancing algorithm on an

Intel Core i7 3.2 GHz with Nvidia

GeForce GTX 460. The run-time

in ms is shown in Figure 7 for

an increasing number of refer-

ences. The solver for the equa-

tion system (blue graph) is the

bottleneck, as it involves a ma-

trix inversion in the size of the

number of references. The RBF

interpolation (blue graph) how-

ever performs with around 0.05

ms almost independently of the

number of references.

VI. RESULTS AND

APPLICATIONS

In this section we present various color balancing results

for image editing and augmented reality applications, and

compare them to realated works. Please see also the accom-

panying video where we show several examples for both

color balancing and augmented reality.

A. Interactive Color Transfer and Correction

Given a source image and a target image with a desired

look, the user can interactively define a color mapping by

clicking correspondences. The result is instantly visible, and

the user can drag the correspondence points around to see

the effect. A number of examples are shown in Figure 8

that demonstrate the flexibility of our approach. Due to

Algorithm 1 Fragment Shader Color Balancing

1: e← pixelColor()
2: eLab ← rbg2lab(e)
3: ve ← (0, 0, 0)
4: se ← 0
5: for i = 1→ n do
6: [ci,wi]← dataTexture(n/i)
7: r ← phi(ci, eLab)
8: ve ← ve + rwi

9: se ← se + r
10: end for
11: eLab ← eLab + ve/se
12: return lab2rgb(eLab)

the global nature of the vector field color transformation,

it is very easy to balance an image to exactly match an

example photograph. Even completely changing the color

composition of an image can be achieved robustly using the

same kind of input.

Figure 9 shows a series comparisons of our color balanc-

ing method with other color balancing approaches. Since our

method is designed and optimized for global color balancing,

it is able to transfer the colors from the target image to

the source image with only a sparse set of references.

User edits in Photoshop changing indirect parameters (hue,

saturation, etc.) can be unintuitive and time consuming, and

it is difficult to achieve exact results. Achieving the correct

balance between the yellow and red colors in the bottom

example are difficult with only indirect manipulation. Both

the Photoshop Color Match function and the approach of

Reinhard et al. [3] perform very similarly. Both methods

automatically achieve a global balancing of the image but

cannot recreate the exact shade of the Taj Mahal. Using the

sparse input used for our color balancing, the approach of Li

et al [15] struggles, as their method is specifically designed

for local edits. In areas with strong gradients (e.g. the dome

of the Taj Mahal) their approach produces artifacts. Linear

regression is, due to its limited flexibility, not able to satisfy

the constraints.

B. Augmented Reality Color Balancing

While the color transfer tool only utilizes the flexible

vector space color transfer, applications in augmented reality

become possible when combining it with our robust color

tracking over time. A known marker in the scene, like the

cover of a book, can be tracked and the colors referenced

with a digital copy of the image. Figure 10 shows two

examples of color balancing for augmented reality.

The top example shows a series of comparisons between

our color correction and linear regression. It can be observed

that our approach is more accurate for colors that are

available in the video stream and more robust for colors

that are not tracked. The bottom row shows an example

where an animated image is placed in a book. Due to the

color tracking of the real image on the same page we are

able to more realistically embed the animated figure into

the video. Note that the adjustment of the colors in the flat

shaded examples would only work for one frame as the white

balance and global light change over time.

Generally, in augmented reality applications, it is crucial

to perform proper image balancing for convincing augmen-

tation. A viewer is especially sensitive to colors that already

appear in the video stream, and will notice when similar

colored renderings are balanced differently. The results in

Figure 10 and in the accompanying video demonstrate, that

our color tracking and balancing is able to achieve the

desired accuracy, while linear regression [2] struggles.

54

Ta
rg

e
t

Im
a

g
e

s
S

o
u

rc
e

 Im
a

g
e

s
O

u
r

R
e

su
lt

s

Figure 8. Several examples of our sparse color balancing. The colored circles in images mark the color correspondences.

Target Image Our ApproachLi et al. 2010Lin. Regression
Photoshop

Color Match

Photoshop

User Edits
Source Image

Reinhard et al.

2001

Figure 9. Comparison of our approach with other methods for image balancing using sparse correspondences.

VII. DISCUSSION

In this paper, we have presented an approach for inter-

active image-based color balancing using only a sparse set

of correspondences, as well as an extension for temporally-

consistent rendering for augmented reality applications.

Through our proposed global optimization of interpolation

functions, we provide a tool to optimize function parameters

to mimic color changes from example images and optimally

adjust colors accordingly.

The proposed color correction and tracking algorithms

have some limitations that direct us to areas of future work.

The color correction is not able to reconstruct missing

information. Over- or underexposed images can flatten color

gradients to the point where only a few colors remain. Our

color transfer method will not smooth spatially, and therefore

is not able to increase the amount of colors present in a

gradient. Coupling the color transfer algorithm to camera

exposure setting is an area of future work that could address

this issue.

The color tracking algorithm relies on flat color areas in

the image to work well. This requirement is orthogonal to

many tracking algorithms that use features like corners or

edges. However, our algorithm will reject such colors instead

of producing false results. In our current implementation we

employ equidistant sampling of points on the marker surface

where the colors near features get removed by our tracking.

Improving this sampling using information such as edges or

gradients in the marker image would be an interesting topic

to explore.

REFERENCES

[1] G. Klein and D. W. Murray, “Simulating Low-Cost Cameras
for Augmented Reality Compositing,” IEEE Transactions on
Vision and Computer Graphics, vol. 16, no. 3, pp. 369–380,
2010.

[2] M. Knecht, C. Traxler, W. Purgathofer, and M. Wimmer,
“Adaptive Camera-Based Color Mapping for Mixed-Reality
Applications,” in ISMAR, 2011, pp. 165–168.

[3] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color
Transfer Between Images,” IEEE Computer Graphics and
Applications, vol. 21, no. 5, pp. 34–41, 2001.

[4] X. Xiao and L. Ma, “Color Transfer in Correlated Color
Space,” in VRCIA, 2006, pp. 305–309.

[5] F. Pitié and A. C. Kokaram, “The Linear Monge-Kantorovitch
Linear Colour Mapping for Example-Based Colour Transfer.”
Visual Media Production, 2007.

55

Fl
a

t
S

h
a

d
e

d

O
u

r
B

a
la

n
ci

n
g

Tr
a

ck
e

d
 P

o
in

ts

Input Frames Tracked Points Lin. RegressionOur Balancing Our Balancing Lin. Regression
O

u
tl

ie
r

U
n

tr
u

st
e

d

Tr
u

st
e

d

C
o

m
e

b
a

ck

Figure 10. Two examples of our color tracking and balancing in augmented reality applications. Outliers (red x) arising due to specular reflection
are detected and supported with comeback colors (yellow triangle). The top row shows a series of comparisons between our color correction and linear
regression. Our approach is both more accurate in recreating the exact image colors as well as produce more plausible color balancing for unknown colors
(i.e. green frog). The bottom row shows an example where an animated image is placed in a book and balanced by tracking the colors of a real image.

[6] S. Kagarlitsky, Y. Moses, and Y. Hel-Or, “Piecewise-
Consistent Color Mappings of Images Acquired Under Vari-
ous Conditions,” in ICCV, 2009, pp. 2311–2318.

[7] A. Neumann and L. Neumann, “Color Style Transfer Tech-
niques using Hue, Lightness and Saturation Histogram Match-
ing,” in Computational Aesthetics, 2005, pp. 111–122.

[8] X. Xiao and L. Ma, “Gradient-Preserving Color Transfer,”
Computer Graphics Forum, vol. 28, no. 7, pp. 1879–1886,
2009.

[9] A. Abadpour and S. Kasaei, “A Fast and Efficient Fuzzy
Color Transfer Method,” in Signal Processing and Informa-
tion Technology, 2004, pp. 491 – 494.

[10] D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski,
“Interactive Local Adjustment of Tonal Values,” ACM Trans-
actions on Graphics, vol. 25, no. 3, pp. 646–653, 2006.

[11] Y.-W. Tai, J. Jia, and C.-K. Tang, “Local Color Transfer via
Probabilistic Segmentation by Expectation-Maximization,” in
CVPR (1), 2005, pp. 747–754.

[12] X. An and F. Pellacini, “User-Controllable Color Transfer,”
Computer Graphics Forum, vol. 29, no. 2, pp. 263–271, 2010.

[13] X. An and F. Pelacini, “AppProp: All-Pairs Appearance-Space
Edit Propagation,” ACM Transactions on Graphics, vol. 27,
no. 3, 2008.

[14] Z. Farbman, R. Fattal, and D. Lischinski, “Diffusion Maps for
Edge-Aware Image Editing,” ACM Transactions on Graphics,
vol. 29, no. 6, p. 145, 2010.

[15] Y. Li, T. Ju, and S.-M. Hu, “Instant Propagation of Sparse
Edits on Images and Videos,” Computer Graphics Forum,
vol. 29, no. 7, pp. 2049–2054, 2010.

[16] J. Adams, K. Parulski, and K. Spaulding, “Color Processing
in Digital Cameras,” IEEE Micro, vol. 18, no. 6.

[17] V. Agarwal, B. R. Abidi, A. Koschan, and M. A. Abidi, “An
Overview of Color Constancy Algorithms,” Journal of Pattern
Recognition Research, pp. 42–54, 2006.

[18] N. Cohen, “A Color Balancing Algorithm for Cameras,”
EE368 Digital Image Processing, 2011.

[19] K. Dale, M. K. Johnson, K. Sunkavalli, W. Matusik, and
H. Pfister, “Image Restoration using Online Photo Collec-
tions,” in ICCV, 2009, pp. 2217–2224.

[20] S. B. Kang, A. Kapoor, and D. Lischinski, “Personalization
of Image Enhancement,” in CVPR, 2010, pp. 1799–1806.

[21] H. Siddiqui and C. A. Bouman, “Hierarchical Color Correc-
tion for Camera Cell Phone Images,” IEEE Transactions on
Image Processing, vol. 17, no. 11, pp. 2138–2155, 2008.

[22] B. Wang, Y. Yu, T.-T. Wong, C. Chen, and Y.-Q. Xu, “Data-
Driven Image Color Theme Enhancement,” ACM Transac-
tions on Graphics, vol. 29, no. 6, p. 146, 2010.

[23] S. Yang, Y.-A. Kim, C. Kang, and B.-U. Lee, “Color Compen-
sation Using Nonlinear Luminance-RGB Component Curve
of a Camera,” in ISVC (2), 2011, pp. 617–626.

[24] B. Wang, Y. Yu, and Y.-Q. Xu, “Example-Based Image
Color and Tone Style Enhancement,” ACM Transactions on
Graphics, vol. 30, no. 4, p. 64, 2011.

[25] H. T. Lin, S. J. Kim, S. Susstrunk, and M. S. Brown, “Re-
visiting Radiometric Calibration for Color Computer Vision,”
ICCV, 2011.

[26] ARToolKit, “Software Library for Building Augmented Re-
ality Applications.” 2012, [Online; accessed 29-June-2012].

[27] M. A. Fischler and R. C. Bolles, “Random Sample Consensus:
A Paradigm for Model Fitting,” Commun. ACM, vol. 24, no. 6,
pp. 381–395, 1981.

56

