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Abstract. We present a general technique for improving space-time re-
constructions of deforming surfaces, which are captured in an video-based
reconstruction scenario under uniform illumination. Our approach simul-
taneously improves both the acquired shape as well as the tracked motion
of the deforming surface. The method is based on factoring out surface
shading, computed by a fast approximation to global illumination called
ambient occlusion. This allows us to improve the performance of optical
flow tracking that mainly relies on constancy of image features, such as
intensity. While cancelling the local shading, we also optimize the sur-
face shape to minimize the residual between the ambient occlusion of
the 3D geometry and that of the image, yielding more accurate surface
details in the reconstruction. Our enhancement is independent of the
actual space-time reconstruction algorithm. We experimentally measure
the quantitative improvements produced by our algorithm using a syn-
thetic example of deforming skin, where ground truth shape and motion
is available. We further demonstrate our enhancement on a real-world
sequence of human face reconstruction.

1 Introduction

In the film and video game industries, video-based motion capture has evolved
into an essential tool for generating realistic animations of actor performances.
Driven by recent advances in computer vision, state-of-the-art motion capture
systems can now reconstruct high-quality deforming surfaces in dense correspon-
dence, enabling performance capture at the resolution of deforming cloth and
skin [1–6]. The goal of these systems is to reconstruct both the time-varying
shape as well as the motion for each point on the surface, typically utilizing
tools such as multi-view 3D reconstruction [7] and image-based tracking via
dense optical flow [8].

Despite the high quality reconstructions that these systems achieve, we iden-
tify two problems that can occur when reconstructing the shape and motion of a
deforming surface from video images. First, as a surface deforms it exhibits local
shading changes over time, which tend to decrease the accuracy of most optical
flow tracking methods, as they typically assume constant brightness (or constant
brightness gradients) of corresponding pixels. To minimize shading changes from
shadows and specular highlights, capture setups often take special care to capture
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surfaces under diffuse ambient illumination. Even then, local shading changes can
occur during deformation, particularly for local high-frequency changes, such as
the folds of cloth or the wrinkles of skin. As a result, the temporal image track-
ing of these interesting phenomena is often inaccurate, leading to an incorrect
motion estimation. To address this issue, we propose a technique for improving
the motion reconstruction of a deforming surface under uniform illumination by
increasing the accuracy of the image-space tracking. We observe that shading
changes in these ambient illumination setups can be well-approximated by am-
bient occlusion. Therefore, we compute the per-frame ambient occlusion of the
deforming surface and cancel this term from the input images, resulting in an
image-sequence that almost perfectly fulfills the brightness constancy assump-
tion used in the majority of optical flow methods. We show that optical flow
tracking is more accurate on this sequence than on the original images. This
general improvement is orthogonal to the optical flow implementation, and we
demonstrate that it complements several well known optical flow algorithms.

The second problem is that the reconstructed 3D shape of local high-frequency
details also tends to be inaccurate. This is often a result of poor photometric in-
formation caused by foreshortening and local shading, as well as over-smoothing
of surface details to eliminate noise. We can again use ambient occlusion to cor-
rect this problem. If the initial shape is incorrect, then the estimated ambient
occlusion of the surface will differ from the measured shading in the image. We
use this residual to improve the 3D geometry, by optimizing for the shape that
best matches the ambient occlusion observed in the images. Like our motion
improvement technique, the geometry enhancement is independent of the initial
reconstruction algorithm.

Our two-phase process of improving motion tracking and enhancing the re-
constructed geometry can be repeated iteratively until convergence. When ap-
plied to a sequence captured under uniform illumination, the result is a more
accurate spatio-temporal reconstruction of the deforming surface, which is more
faithful to the true surface both in terms of shape as well as motion.

1.1 Related Work

We will first review motion tracking under brightness changes, and then discuss
methods related to our illumination-aware geometry enhancement technique.

Illumination-Robust Optical Flow. There are several strategies for dealing
with brightness changes in optical flow estimation. For purely additive changes
imposing constancy of the image gradient is one solution, used for example in
[9]. More sophisticated methods consider patch-based matching scores like cross
correlation [10] that are more invariant, e.g. under multiplicative changes. How-
ever, higher invariance always discards image information that could help the
matching in regions without brightness changes and implementing sophisticated
matching scores can be very tedious. Even more involved are approaches that
estimate spatially varying maps that explain multiplicative [11] or additive and
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multiplicative brightness changes, e.g. [12]. This introduces additional unknowns
that need to be estimated which further complicates implementation and intro-
duces more tuning parameters that need to be carefully adjusted. Similarly,
Haussecker and Fleet [13] jointly estimate optical flow and model parameters
of a physical processes causing brightness change. However, the processes are
restricted to a moving illumination source and surface rotation. If color images
are available, using alternative color spaces like the HSV space, can also im-
prove robustness under illumination changes; see [14] and the references therein.
However, such color spaces also cause problems, e.g. the H- and S-channel of
the HSV space cannot distinguish grayscales [14]. In practice, we also found no
color space transformation that can adequately separate illumination changes
from albedo, e.g. when skin wrinkles occur.

Similar to our approach, Wedel et al. [15] also modify the input images to ease
flow estimation. They decompose the images into a structure and a texture part
showing large scale image features and high frequency details, respectively. Then,
mainly the texture part is used for flow computation as illumination artifacts
are mainly present in the structure part. However, this only holds for larger
objects casting shadows and not for small details like wrinkles, which are in the
focus of our work. Moreover, the texture part also contains most of the noise and
thus decreases the robustness of the flow estimation. Related to this are retinex
techniques like homomorphic filtering [16] that separate the image in reflectance
and illumination components, which is however an inherently ill-posed problem.

In summary we can say that in contrast to previous work, our strategy lever-
ages information about the 3D scene geometry to cancel out brightness changes.
In this, we certainly tackle less general scenarios, but being tailored towards a
specific application in mind, i.e. the temporal tracking of deforming surfaces, we
achieve high accuracy results even using readily available optical flow algorithms.

Illumination-Aware Geometry Reconstruction. Reconstructing 3D shape
from surface shading is a well studied area of computer vision. Since the early
work of Horn on shape-from-shading [17] and Woodham on photometric stereo [18],
many variants of this approach have emerged, including a lot of work that fuses
shading cues with multi-view information (just a few recent examples are [19–
21]). Related to our geometry enhancement technique, the shape reconstruction
method of Wu et al. [22] performs shading-based shape refinement for smooth
surfaces reconstructed from multi-view stereo. They estimate a general illumi-
nation model of the scene and refine the surface such that the shading variations
observed in the images are explained by the geometry. However, they assume
the surface has a constant albedo, which limits the application range. For exam-
ple, it would not be feasible to refine real human face reconstructions without
producing artifacts.

For deformable object reconstruction, it is possible to obtain highly detailed
geometry under calibrated lighting [23–25], however this places a heavy restric-
tion on the capture setup. We target lighting setups that provide simple uniform
illumination and we use ambient occlusion to refine an initial surface estimate
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obtained from multi-view stereo. Illumination-based refinement of deforming sur-
face reconstructions has been studied previously. Popa et al. [26] add wrinkles
to deforming garments by identifying the shading edges of cloth folds in the
video images. The geometry is then refined to synthesize wrinkles in a tem-
porally consistent manner. Wu et al. also propose to correct wrinkles on cloth
reconstructions [27]. Building on their previous work [22], they estimate the en-
vironment lighting and surface albedo, then add missing fine-scale details to a
coarse dynamic mesh in a temporally consistent way. Both of these techniques
assume that the temporal motion is accurate from the start, whereas we couple
geometry and motion refinement into an iterative scheme for globally improving
the spatio-temporal reconstruction.

1.2 Contributions

In this paper we propose techniques to simultaneously improve the time-varying
shape as well as the motion tracking of a deforming surface, captured in a video-
based reconstruction scenario under uniform illumination. Specifically, our con-
tributions are as follows:

1. We show that ambient occlusion can be computed on the per-frame geometry
and removed from the input images, improving the performance of several
well-known optical flow algorithms.

2. We propose a shape optimization method that minimizes the ambient occlu-
sion residual between the geometry and the images.

3. We evaluate our method on ground truth data and highlight the practicality
of our approach by enhancing a real-world sequence of face deformation.

2 Problem Definition and Method Overview

To reconstruct a deforming surface, we must capture both the time-varying shape
of the surface as well as its motion, tracking each point over time. In recent ap-
proaches, this has been achieved by combining multi-view reconstruction tech-
niques with image-based optical flow tracking [1, 5, 6]. As we mentioned in the
introduction, if the surface contains local high-frequency deformations then both
the optical flow tracking and the reconstructed surface shape can be inaccurate.
Figure 1 highlights these problems for a real-world reconstruction example of
deforming skin [6]. Here we see that the local shading variation causes incorrect
flow vectors for a well-known optical flow technique [9]. Furthermore, the recon-
structed surface geometry [28] is overly smooth in the wrinkle regions. In order
to compensate for these problems, our approach is to compute and factor out
local surface shading, approximated by ambient occlusion.

2.1 Ambient Occlusion

Ambient occlusion is a global shading method that approximates global illumi-
nation [29]. It does not take into account effects such as cast shadows, inter-
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Fig. 1. Motion and geometry reconstruction problems for deforming skin. Two video
images (a) and (b) showing a skin wrinkle forming. (c) shows that a state-of-the-art
optical flow algorithm [9] fails for such illumination changes (flow vectors are visualized
using the color code shown in the inset). (d) shows that the reconstructed geometry [28]
is overly smooth.

reflections or subsurface scattering. However, in a setting with diffuse or omnidi-
rectional illumination, ambient occlusion approximates global illumination well.
Ambient occlusion is defined as

A (x) =
1
π

∫
Ω

V (x, ω) 〈n(x), ω〉 dω, (1)

where x is a point on the surface, n(x) the normal at this point, 〈·, ·〉 denotes the
inner product and V (·, ·) is a visibility function that is 0 if the ray ω is occluded
and 1 otherwise. The integral is formed over the hemisphere Ω, which makes
ambient occlusion costly to compute in general, especially for large meshes. Sev-
eral methods have been proposed for efficient ambient occlusion approximations
(see [30] for a survey).

In our work, we will refine the shape of a surface based on the computed
ambient occlusion, and so the quality of the refinement depends on the accuracy
of the ambient occlusion estimation. At the same time, our refinement method
is iterative, and so we aim for fast computation. To meet these requirements,
we implemented a fast ray-tracing approach with deterministic ray samples. We
use the Intel Embree high-performance ray-tracing library1, which is designed
exactly for this purpose. However, instead of traditional Monte-Carlo stochastic
ray tracing, we use a deterministic cosine-distribution of samples around each
vertex normal. While this approach introduces a small amount of bias in the
result, the spatially-varying noise in ambient occlusion is greatly reduced for the
same number of samples, allowing us to compute a close approximation in a
matter of seconds rather than tens of minutes with the Monte-Carlo approach.
Figure 2 shows the ambient occlusion computation for a 3D surface patch. In
order to determine how many ray samples to use, we plot the RMS error for
different sample sizes (Figure 2 (d)) compared to ground truth ambient occlu-
sion computed using Monte-Carlo ray-tracing with 100,000 samples (Figure 2
(b)). We found that any quality gain beyond 500 samples (Figure 2 (c)) was
negligible. Note that our deterministic approximation does not converge exactly
to the ground truth, as we see in the RMS error plot, and the convergence is
not a monotonically decreasing function. However, the result is visually almost

1 http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-
kernels/
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identical to the ground truth, and in practice we found that inaccuracies of such
a small magnitude had no effect on our algorithm.

(a) (b) (c) (d) # Ray Samples
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Fig. 2. Ambient occlusion computation. (a) 3D surface patch. (b) Ground-truth com-
puted using Monte-Carlo ray-tracing with 100,000 ray samples. (c) Our approximation
with 500 samples is almost identical. (d) RMS error of our approximation for different
sample sizes.

2.2 Method Overview

We now give an overview of our technique for improving reconstructions of de-
forming surfaces by cancelling ambient occlusion. A pictorial representation of
the method can be found in Figure 3. Given a sequence of reconstructed meshes
and the corresponding calibrated camera images, our algorithm processes the
frames sequentially with three main steps per frame:

1. Cancel Ambient Occlusion - The ambient occlusion of the surface is
computed and projected onto each image plane, then divided out of the
image. Ambient occlusion is computed as described in Section 2.1.

2. Motion Improvement - Optical flow is computed on the shading-free im-
ages created by cancelling ambient occlusion (Section 3).

3. Shape Improvement - The 3D shape is refined to minimize the ambient
occlusion residual when cancelling from the images, leading to a surface that
better captures fine details such as wrinkles (Section 4).

These steps are iterated until the shape and motion refinement becomes negli-
gible. In our experiments, typically only two to three iterations are required.

Our algorithm is completely independent of the original 3D reconstruction
method and the optical flow algorithm. In Section 5 we will show improvements
to the state-of-the-art facial geometry reconstruction method [28]. We also show
that several common optical flow methods [31, 32, 9, 14, 33] perform much better
on the ambient occlusion cancelled images than the original images.

2.3 Notation

The following notation will be used throughout the paper.
Mt(x) is a mesh at frame t, defined over vertices x.Mt will be used for short.
It(p) is an image at frame t, defined over pixels p. It will be used for short.
F t−1←t(p) is the flow from It to It−1. F t−1←t will be used for short.
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Fig. 3. Overview of the algorithm - the algorithm consists of three major stages.
Stage 1 computes ambient occlusion on the mesh Mt and removes it from the input
image It. This improves the estimation of the flow field F0←t in Stage 2. Stage 3
produces a refined shapeMt? by minimizing the residual of the observed shading and
computed ambient occlusion.

3 Motion Improvement

The flow field F t−1←t is improved by removing shading caused by ambient oc-
clusion of the reconstructed meshes Mt−1 and Mt from the images It−1 and
It, respectively. The shading is removed via

Itcancel =
It

P (A(Mt))
, (2)

where P (·) projects the ambient occlusion computed for the mesh M onto the
image I. The improved flow field F t−1←t

cancel is integrated with F0←t−1
cancel to produce

the motion estimation F0←t
cancel from frame t to the first frame. The flow is esti-

mated backwards to facilitate easy warping of the first frame to frame t, which
will be required in the next stage of the algorithm.

4 Shape Improvement

The motivation to refine the shape stems from the observation that in the as-
sumed setting most shading changes are caused by shape deformation. The shape
is refined such that the predicted shading corresponds to the observed shading.
The shape improvement consists of the following steps:

1. Compute the observed shading A′(x) from the images.
2. Compute the ambient occlusion A(x) on the surface.
3. Compute the refinement δ(x) based on A′(x) and A(x).
4. Update vertex positions x? = x + δ(x)n(x).

These steps are performed iteratively for all vertices of a mesh. Note that ver-
tices are displaced only along the normal direction. Constraining the refinement
to a single dimension greatly reduces computational complexity and increases
robustness of the algorithm. If the surface contains many high-frequency details,
we found that a low-pass filter of the normals produces better results. Although
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normal vectors are updated in each iteration in order to compute accurate am-
bient occlusion, the displacement directions of the vertices remain constant. The
steps of our algorithm are explained in more detail in the following.

The observed shading is computed from the input images. For a single image,
A′(x) is computed as

A′(x) =
It(q)

W 0→t(I0
cancel(q))

, (3)

where q is the projection of x onto the image plane, and W a→b is a warping
function that warps an image from frame a to frame b given the flow field Fa←bcancel

computed in Section 3. If multiple views exist, A′(x) can be computed as a
(weighted) average from all images. In this equation we assume that shading
has been completely removed from I0

cancel, which is plausible if I0 is chosen as a
neutral expression.

The predicted shading A(x) is computed from the mesh Mt using ambient
occlusion, as described in Section 2.1. The refined position x? for a vertex x of
the mesh Mt is computed as

x? = x + δ(x)n(x). (4)

Using the residual δA(x) = s(A(x) − A′(x)), where s converts the unit-less
ambient occlusion to an appropriate scale for the geometry, the refinement is
computed as

δ(x) =
γ(A′(x))δA(x) + λδL(x)

γ(A′(x)) + λ
, (5)

where λ is a parameter that controls the influence of the regularization. We use
λ = 2. The regularized offset δL(·) is computed using Laplacian coordinates as

δL(x) = 〈∇2M(x),n(x)〉 − η(x), (6)

where η(·) controls the target shape. The default choice is η(x) = 0 for all
vertices, which prefers smooth solutions. If the shape of the input meshes can
be considered mostly accurate, then setting η(·) to the Laplacian coordinates of
the input mesh is a better choice. In these cases the regularization will try to
maintain the input shape.

The non-linear function γ(·) controls the refinement strength depending on
the observed shading A′(x). This function accounts for the non-linear influence of
noise in A′(x) on the shape. The same perturbation of A′(x) would induce larger
perturbation of the shape in areas of lower concavity, as depicted in Figure 4.

From the illustration in Figure 4, an ambient occlusion value can be charac-
terized by a half-angle α, defining a cone of visibility. Then γ(·) can be written
as a function of α,

γ(α) =
cos(α) + ε

1 + ε
, (7)

where ε is a small parameter that controls the lower bound of γ(·). Setting ε
to 0 will prevent refinement in planar and convex areas. We use ε = 0.1. The
observed shading A′(x) is related to γ(·) via the angle α through
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Fig. 4. This figure depicts the non-linear dependency of the displacement on the ob-
served shading in 2D. The left and middle drawings show the relation of the half-angle
α to the ambient occlusion for two different cases. The right figure illustrates that the
same perturbation dA in ambient occlusion leads to different dα and therefore different
displacements δ depending on the concavity of the surface.

A′ (x) ≈ 1
π

∫
Ω

V (x, ω) 〈n(x), ω〉 dω (8)

=
1
π

∫ 2π

0

∫ α

0

cos (φ) sin (φ) dφdθ (9)

= sin2(α) (10)

and thus

γ(A′(x)) =

√
1−A′(x) + ε

1 + ε
. (11)

Refining convex areas less than concave ones is also very valuable when as-
suming the input shape is mostly accurate, as areas that are well visible are
more likely to be of correct shape than concave ones.

5 Results

In this section we present the results of our algorithm, starting with an evaluation
using a synthetic dataset, and then demonstrating the improvement we achieve
on a real-world capture sequence.

5.1 Quantitative Evaluation

To quantitatively measure the effect of our optical flow improvement method, we
designed a synthetic test sequence giving us ground truth motion. The sequence
consists of a skin-textured surface patch that undergoes wrinkling while deform-
ing. The deformation was created in Maya using blend shapes. We evaluate six
different optical flow algorithms: pyramid implementations of Lucas-Kanade [31]
and Horn-Schunck [32], as well as the Horn-Schunck algorithm with added gradi-
ent constancy, the method of Brox et al. [9], Zimmer et al. [14], and Werlberger et
al. [33]. We used the openCV1 implementation for Lucas-Kanade, the flowLib2

1 http://sourceforge.net/projects/opencvlibrary
2 http://gpu4vision.icg.tugraz.at/index.php?content=subsites/flowlib/flowlib.php
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library for Werlberger et al. and the implementations of the other algorithms
were kindly provided by Zimmer et al. [14]. Figure 5 shows the two frames that
were used for the benchmark, as well as the backward flow field. The flow visu-
alization from the Middlebury evaluation [8] is not very meaningful in this case
(Figure 5 (c)) since the motion is primarily 1-dimensional, so we use a custom
visualization based on the flow magnitude for this evaluation (Figure 5 (d)).

0

70

35

(a) (b) (d)(c)

Fig. 5. Figures (a) and (b) show two frames of the synthetic sequence used in the
quantitative evaluation. (c) shows the ground truth flow field in the Middlebury color
scheme. To better visualize the large variation in displacement (0px-70px) we employ
the iso-contour scheme depicted in (d).

We chose two temporally distant frames on purpose, to better visualize the
impact of the method. The flow algorithms are also improved for closer frames
but the effect is, of course, smaller if there is less change in shading. A selection
of the evaluation benchmark results are shown in Figure 6 and the full results
are listed in Table 1. We report the Endpoint Error [8] for the complete patch
as well as the Endpoint Error for the worst 33% in order to account for the fact
that only part of the image exhibits shading change.

Algorithm
Endpoint Error (EE) [px] Upper 33% EE [px]
Original Refined Original Refined

Horn-Schunck 13.86±12.06 0.15±0.16 28.79±5.85 0.31±0.19
Horn-Schunck (grad.) 3.27±7.83 0.15±0.18 9.86±11.34 0.32±0.22
Brox et al. 1.77±6.03 0.13±0.14 10.72±22.22 0.29±0.16
Zimmer et al. 2.53±6.89 0.15±0.20 8.38±12.21 0.32±0.28
Werlberger et al. 3.14±7.07 0.33±1.14 9.55±9.82 0.76±1.95
Lucas-Kanade 3.02±8.34 1.38±5.59 278.27±85.73 24.12±52.84

Table 1. Mean Endpoint Errors (EE) and standard deviations for all benchmarked
algorithms. The proposed method greatly improves the performance of all algorithms.
The errors reported for Lucas and Kanade are less indicative because they include
outliers that are not caused by wrinkling and the completeness of the result differ
substantially (25% on the original and 87% on the cancelled sequence).

As can be seen from Figure 6, the flow methods have problems estimating
the motion within the wrinkles due to shading change. Cancelling the ambient
occlusion gives consistently better results for all algorithms. Algorithms that
assume only brightness constancy benefit most, but also algorithms that include
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Fig. 6. This figure shows computed flow fields on the original (top row) and cancelled
images (bottom row) for four well known algorithms. All algorithms have problems in
areas where their core matching assumptions are violated due to the change in shading.
Cancelling ambient occlusion increases the performance of all algorithms substantially.
The ground truth flow field is shown in Figure 5 and the computed errors are listed in
Table 1.

gradient constancy show better performance. On the cancelled sequence, the
gradient constancy assumption is not that influential anymore and, for example,
Brox et al. produce the lowest Endpoint Error without gradient constancy. A
special case is Lucas-Kanade. While its performance is greatly improved (see
the second column of Figure 6) the reported errors are less indicative because
they include outliers that are not caused by wrinkling and the completeness of
the result differs substantially (25% on the original and 87% on the cancelled
sequence).

The parameters were empirically chosen to produce the best result that can
be achieved before and after cancelling ambient occlusion. In general, we found
that parameter tuning for the original images was more challenging since the
resulting flow was very sensitive to parameter changes, where on the cancelled
images flow computation was more robust to parameter variations. To achieve
decent flow estimations for the original images we had to choose high regulariza-
tion parameters, while for the cancelled images significantly lower regularization
produced the most accurate results.

5.2 Real-World Sequence

Figure 7 demonstrates the impact of the method on a real-world sequence (kindly
provided by Beeler et al. [6]). Motivated by the analysis of the synthetic data
(Table 1) we employed the method of Brox et al. to compute the flow as it
performed best with similar parameter settings for the original and cancelled
images. We ran three overall iterations and the mesh refinement ran for 30
iterations. The runtime of our parallelized C++ implementation was under 3
minutes per frame on a Mac Pro using 8 cores. The size of the images is 539×329
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pixels and the mesh consists of roughly 150K vertices. As can be seen, not only
the flow field but also the shape of the wrinkles is greatly improved. Figure 8
shows that the wrinkles of the original and refined meshes produce substantially
different silhouettes.

O
rig

in
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ed

Image Frame 1 Mesh Frame 2Image Frame 2 Flow Field

Fig. 7. Real-World Sequence - the first row shows the original images along with
computed flow field and input shape. The second row shows the cancelled images along
with the improved flow field and refined shape after three iterations. The flow fields
were computed using the method of Brox et al.

(a) (c)(b)

original
re�ned

Fig. 8. Shape Refinement - (a) and (b) show the original and refined shapes. Figure
(c) overlays the silhouette of both shapes for better comparison. Note how the refined
shape exhibits the v-shaped valleys and u-shaped ridges characteristic to wrinkles,
while the original shape fails to do so.

6 Discussion and Conclusion

We have shown that cancelling the ambient occlusion from captured images of
a deforming surface can lead to improved motion and surface reconstructions,
particularly for high-frequency deformations such as the wrinkles of human skin.

In order to accurately improve reconstructions, our method makes a few
assumptions about the captured sequence. First, we assume that the lighting
setup is very close to ambient illumination, so that the recorded shading can
be closely approximated by ambient occlusion. This is not a severe limitation
however, because most capture setups are designed with nearly uniform omni-
directional lighting. In the case of arbitrary non-uniform illumination, we could
estimate the environment lighting using a method similar to Wu et al. [27],
which we consider future work. The second assumption is that the reconstructed
sequence contains at least one frame without any shading, or alternatively the
correct shape such that ambient occlusion can be computed and removed. We
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have referred to this frame as the reference mesh M0 and reference image I0.
This frame is needed to remove albedo and compute the observed shading in
the rest of the sequence (Equation 3). For face reconstructions, this can be a
neutral pose without wrinkles. If no such frame exists, a simple pre-processing
step could be applied to search for the brightest occurrence of each vertex in
the sequence, assuming that it is un-shaded at some point. We will explore this
direction in future work.

This paper includes a detailed evaluation of our technique, using a ground-
truth example of a deforming surface patch with known motion. Several well-
known optical flow algorithms are shown to benefit from our approach. This
demonstrates that when considering a specific scenario, like tracking deforming
surfaces, modifying the input data in an appropriate way can be a valuable
alternative to designing more sophisticated optical flow algorithms.

We demonstrate our method on a real-world capture sequence of a human
face undergoing an expression change. In particular, our refinement process pro-
duces much more realistic skin wrinkles. Our method can be applied to an ex-
isting reconstruction sequence, independently of the reconstruction method or
the optical flow algorithm, and it can be easily integrated into new space-time
reconstruction algorithms.
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