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Abstract— In this paper we describe a novel method to integrate interactive visual analysis and machine learning to support the
insight generation of the user. The suggested approach combines the vast search and processing power of the computer with the
superior reasoning and pattern recognition capabilities of the human user. An evolutionary search algorithm has been adapted to
assist in the fuzzy logic formalization of hypotheses that aim at explaining features inside multivariate, volumetric data. Up to now,
users solely rely on their knowledge and expertise when looking for explanatory theories. However, it often remains unclear whether
the selected attribute ranges represent the real explanation for the feature of interest. Other selections hidden in the large number
of data variables could potentially lead to similar features. Moreover, as simulation complexity grows, users are confronted with huge
multidimensional data sets making it almost impossible to find meaningful hypotheses at all. We propose an interactive cycle of
knowledge-based analysis and automatic hypothesis generation. Starting from initial hypotheses, created with linking and brushing,
the user steers a heuristic search algorithm to look for alternative or related hypotheses. The results are analyzed in information
visualization views that are linked to the volume rendering. Individual properties as well as global aggregates are visually presented
to provide insight into the most relevant aspects of the generated hypotheses. This novel approach becomes computationally feasible
due to a GPU implementation of the time-critical parts in the algorithm. A thorough evaluation of search times and noise sensitivity
as well as a case study on data from the automotive domain substantiate the usefulness of the suggested approach.

Index Terms—Interactive Visual Analysis, Volumetric Data, Multiple Competing Hypotheses, Knowledge Discovery, Computer-
assisted Multivariate Data Exploration, Curse of Dimensionality, Predictive Analysis, Genetic Algorithm

1 INTRODUCTION

Due to the increasing pace and complexity of modern simulation sys-
tems, engineers are often confronted with huge data sets that are dif-
ficult to make sense of. Usually, the results contain multivariate sets
of physical attributes such as temperature or fluid velocity, often with
hidden relations between them. Even for domain experts, it can be te-
dious to search for explanations for features in the data. In the past,
machine learning (ML) algorithms have been adapted to assist in the
exploration process. In the context of database systems, we find meth-
ods that produce logic rules which are valid for many items in the
database. Based on labels inside the data set, these methods can build
classifiers from the data. However, these methods require knowledge
that is contained in the data itself. That is, the machine learns from the
data only, producing hypotheses that are restricted to given relations
between data items inside. Therefore these techniques are often not
applicable in the field of engineering simulations and computational
fluid dynamics (CFD). The simulation simply does not generate labels
for the data items and a classification can only be found interactively
during visual analysis. A mechanism is thus needed to let engineers
add information that is based on their knowledge and experience. In-
teractive visual analysis (IVA) supports the formation of flexible user
selections. The main idea of IVA is to depict various attributes using
multiple views and to allow the engineer to interactively select (brush)
a subset of the data in these views. All corresponding data items in
linked renderings are highlighted as well, providing the analyst with
information about the interplay of the attributes involved. As an ex-
ample, consider a simulation of an industrial prototype where regions
of high temperatures are found. In the temperature attribute view, the
engineer selects the critical value ranges. During visual inspection in
linked views, the user finds that the areas of critical temperature are re-
lated to regions of high vorticity values and low velocities. This way,
the user has formed the hypothesis that ’critical temperature’ corre-
sponds to ’high vorticity values’ AND ’low fluid velocities’.
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When we present the general concepts of IVA to our application
partners from research and industry, we are often confronted with
scepticism. We can formulate the critical issues in the following ques-
tions (see also Figure 1):

1. How do I know if my selection is the only one that relates to the
spatial feature? Are there alternative explanations?

2. Is there a reasonable hypothesis that corresponds to a spatial fea-
ture I am interested in?

Considering the infinite number of possible selections and logical
combinations thereof, it soon becomes clear that this criticism is jus-
tified. This is often referred to as the curse of dimensionality for
IVA which complicates reasoning when many attribute dimensions
are available. To overcome these problems we propose a combina-
tion of IVA and machine learning. See Figure 2 for an illustration. We
present a set of fitness criteria which filter the best hypotheses out of
the vast search space using a genetic algorithm. While searching, both
the machine and the human user are able to learn from and contribute
to the current set of hypotheses. We present an interactive framework
with adequate visualizations that enable the user to analyze and modify
the generated hypotheses before feeding them back into the machine
learning algorithm.

2 RELATED WORK

Shneiderman [27] suggests to combine information visualization with
data mining and gives additional recommendations for future research:
novel methods should allow the user to specify what he is looking for,
results should be easily reportable and the human responsibility should
be respected. Keim et al. [14] describe the visual analytics process to
be characterized by interaction between data, visualizations, models
about the data, and the users in order to discover knowledge. They em-
phasize the importance of the human in the data analysis process. Seo
and Shneiderman [26] present the rank-by-feature framework to find
features in high-dimensional data. Keim [15] provides a taxonomy of
visual data mining techniques and gives an insightful overview of vi-
sual data exploration techniques. He suggests that the generation of
hypotheses can be done either by automatic techniques from statistics
or with ML or visually. In this paper we show that these approaches
can all work together.

Hao et al. [8] have presented a powerful method to find attributes
correlating to a selected feature. They propose queries which allow to
select hot spots within one attribute and to find correlated attributes.
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Fig. 1. Curse of dimensionality for IVA. In the space of all possible hy-
potheses it is not clear if the current one is the only candidate. This is
a common problem engineers encounter when they use standard IVA
methods (linking and brushing) for making sense of multidimensional
simulation results. Secondly, searching for a hypothesis to explain a
given spatial feature can be almost impossible for the user.
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Fig. 2. We propose the extension of human learning with machine learn-
ing, comprising a genetic algorithm that efficiently searches for the best
hypotheses available.

Yang et al. [31] present a system to extract hidden features in a data
set interactively. They define distance metrics for the user hypotheses
to filter out similar hypotheses using clustering. Müller et al. [20] dis-
cuss how principal component analysis can enhance the visualization
with a focus on scatterplot matrices. Doleisch et al. [6] present the
feature definition language which we have adopted for the interactive
generation of user hypotheses. Kehrer et al. [13] apply this approach to
create insight into weather simulation data. Rautek [24] uses a fuzzy
rule base for the automatic generation of visualization parameters in
volume renderings.

Hertzmann [10] gives an introduction to ML suitable for the visual-
ization researcher. Chen [5] believes that the integration of ML and in-
formation visualization is a fruitful approach. In this spirit, Rossi [25]
suggests to favor user intervention and control during ML over di-
rect interaction with the visualization. Ward [30] describes how vi-
sual clues allow users to monitor dimension reduction and clustering
techniques in order to check whether important information has been
removed. Jänicke et al. [11] have presented an approach to find rel-
evant regions inside large and complex data sets based on statistical
complexity.

Laine [16] discusses three criteria for machine learning to be ap-
plicable in an industrial environment. These are supervised operation,
robustness and understandability. He stresses that statistical signifi-
cance is no measure for relation to the problem of interest and presents
examples where statistical properties are not sufficient for knowledge
generation. Ma [18] discusses seminal work that allows the user to
select samples of relevance from which a machine learning algorithm

builds a classifier which then segments the rest of the data (see also
[28, 29]).

Another direction of research focuses on the improvement, verifi-
cation or substantiation of data mining results with visualization and
interaction. These works show how classifiers can be improved or an-
alyzed by interaction and visualization. Examples are: decision tree
construction, support vector machine algorithms and association rules
- all improve when supported by an IVA environment [1, 22, 4, 19, 23].

3 VISUAL LEARNING

In this section we describe different aspects of the visual framework
which allow to monitor and steer the ML algorithm. We start with a
general overview and give an example. Then we discuss several im-
portant facts which are relevant when combining human and machine
learning. Details are discussed in later sections.

The genetic algorithm can be considered to be learning from the
population of available hypotheses which encapsulate the generated
information about the data set. When the user or the machine inter-
act with the hypotheses in the population, using editing, optimization
or combined operations, the population grows while generating novel
information. Based on fitness evaluation or user interaction, the low
performing hypotheses or parts thereof are removed which is also an
important learning step.

We structure the presented approach according to different types of
interaction:

• Genes: When working with selections the user creates novel in-
formation which is treated by the algorithms as genes. In the
presented framework a single selction is a gene. Handling of
genes is discussed in Subsection 3.2.

• Hypotheses: Complex hypotheses are composed of selections.
A hypothesis can be evaluated for each data item and linked to
the volume rendering for inspection. Based on information on
other hypotheses in the population and on his own background
knowledge, the user can analyze the influence of the selections
and recombine and modify the hypotheses before reiterating the
heuristic search. The interaction with hypotheses is discussed in
Subsection 3.3.

• Fitness: To exercise a global type of control over the develop-
ment of the population, the user is able to specify different pa-
rameters such as the weights for the computation of fitness values
(see Subsection 3.4).

• Optimization: It can be very difficult to maximize the fitness of
a hypothesis interactively. In Subsection 3.5, we describe a solu-
tion to this problem and explain why interaction is still necessary.

• Global Parameters: These parameters steer the ML algorithm
and control the rate of mutation, recombination and selection
(see Section 5.

3.1 Considerations on Learning
In this section we present some facts we consider relevant when human
and machine learning are to be combined.

Confirmation bias Cognitive science shows that there is a ten-
dency to search for new information in a way that confirms the cur-
rent hypothesis and to irrationally avoid information and interpreta-
tions which contradict prior beliefs [12].

No free lunch From theory we know that there is no universally
good search/learning configuration [7]. Changing one parameter may
improve the performance for some problems, but usually reduces it
for others. Human knowledge is required to specify good parameters
and to steer the machine learning algorithm into the right direction.
For example the selection in Figure 3 can be locally optimal, but the
user understands that disabling parts of the hypothesis makes sense
nevertheless.

Strengths and weaknesses The most important strength of the hu-
man user is his ability to understand the problem at hand. Therefore he



can often decide when to perform directed search (optimization) and
how to limit the search space. Furthermore, based on the visualiza-
tion, he is often able to extract information from noisy or incomplete
data. The user can give meaning to the features detected in the data.
The machine on the other hand has many capabilities the user lacks:
its work is inexpensive, fast and tireless. It is able to perform large
searches and we know that heuristic search algorithms can perform
quite well in large and unstructured search spaces.

No Labels Flow features can be fuzzy for multiple reasons. Of-
ten, their boundaries are not sharp. Larger features (such as vortices)
are composed of smaller structures which can be features themselves.
When exploring simulation data it is not pre-determined which data
ranges are important. Only after the engineer has gained understand-
ing of the situation we obtain labels for the data (e.g. ’too hot’).

User Requirements The three central requirements are control, ro-
bustness and understandability. Control enables the engineer to define
what he considers interesting and to steer the machine learning process
in the right direction. Robustness is the insensitivity to small errors or
deviations from assumptions. The third requirement is understand-
ability. This means straightforward visualization of results and their
textual representation to facilitate reporting.

3.2 Visual Genes

We call the smallest item which carries information a gene. In the
present context, we consider a single one-dimensional fuzzy selection
a gene. That is a tuple of the form (fuzzymin, fullmin, fullmax, fuzzymax,
ai), where the first four values define a fuzzy selection and ai the rele-
vant attribute. Detailed information about selections is visible in small
scatterplot icons. See Subsection 4.1 for a formal definition. These
icons act as toggle buttons to allow deactivation of all selections in
one attribute view. E.g. in Figure 3 (3) two genes have been switched
off. For more specific interactions, the user can enlarge these scat-
terplots to edit, move, add or remove selections. In the first steps of
data exploration, one of the most important tasks is to find the data
attributes which are relevant for the problem at hand. Also, when a
very large number of attributes is available, the heuristic algorithm will
learn faster when only relevant attributes are considered. Therefore,
we augment the user interface by a simple color-based clue describing
which attributes are common in the gene pool. For each attribute we
compute a frequency value and integrate this information as the back-
ground color into the display of hypotheses. For example in Figure 3
(2) the important attributes a0 and a1 are frequent in the gene pool and
receive darker coloring than the others.

3.3 Visual Hypotheses

A hypothesis is a fuzzy-logic combination of selections. See Subsec-
tion 4.1 for a formal definition. Each hypothesis is visualized as a
horizontal frame of interactive attribute views. Disjunctivly combined
views (clauses) are placed side-by-side without separating space (see
Figure 3 (2)). Clauses themselves are placed in separate frames (see
Figure 3 (5)). A conjunction of clauses forms a hypothesis. The user
hypothesis is indicated by a small icon on the left and further high-
lighted by a different background color. This way, the hypotheses in
a population can be viewed and compared. To specify novel genes,
selections from linked views can be transferred to the user hypothe-
sis. To analyze spatial properties of a given hypothesis, the user can
display the resulting fuzzy selection in a linked 3D rendering, where
fuzzy membership values can be included into the transfer function,
e.g. as a mapping of the degree of selection to opacity or color.

3.4 Visual Fitness

The goal is to find hypotheses that lead to features which are similar
in physical space and different in selection space. These hypotheses
should be as simple as possible. We therefore require measures for
feature similarity, complexity and individuality to define the fitness
of a hypothesis. See Section 4 for detailed explanations. Setting the
weights of these measures provides control over what to look for at the
current learning step.

High fitness values may result from good performance in one or
several of the three components feature similarity, individuality and
complexity. Since this is important information these three compo-
nents are shown as different shades of green in the fitness bar to the
left of each hypothesis. For example in Figure 3 the increase in fitness
between (2) and (3) is due to the lower complexity (lowest dark green
bar), whereas the difference between (3) and (4) is due to the better
match between the features.

3.5 Visual Optimization
A crucial weakness of optimization algorithms which lack the sup-
port from background knowledge is the fact that they often cannot dis-
criminate between local and global optima. Therefore they are prone
to get stuck at local optima where the fitness of a hypothesis is rel-
atively high but far from a global optimum. The question whether
a local optimum is meaningful or not in the current context cannot
be answered by the machine. On the other hand, even if including
the local neighborhood only, an extensive search often can not be
performed by the human user. For these reasons, we add an opti-
mize button to each clause such that the user can decide when and
where to search. We have implemented a simple hillclimbing opera-
tor which performs a gradient ascent towards the local optimum: The
operator moves each boundary element of every selection and cal-
culates the fitness for all changes. From all possible modifications,
the one with the maximal improvement is accepted. This is done for
decreasing step widths until the best improvement falls below some
user specified margin. For example, consider a one-dimensional non-
smooth selection S = (smin,smax) contained in a hypothesis. For a
given step δ s, the fitness of the hypothesis changes when S is replaced
by S1 = (smin−δ s,smax), S2 = (smin +δ s,smax), S3 = (smin,smax−δ s)
or S4 = (smin,smax +δ s).

3.6 The Vis 09 example
This example is based on a synthetic data set containing a well dis-
tinguishable feature (’Vis09’) which is related to multiple attributes
in the data (see Figure 3). Over a 3D domain, we define ten scalar
attributes. Voxels outside the feature have random attribute values in
the [0,1] interval. The data values inside the feature are chosen such
that the feature is describable by two different hypotheses. The first
hypothesis comprises a selection on attributes a0 and a1. The second
hypothesis is defined among attributes a2, a3, a4, a5, a6 and a7 which
have to be combined in a specific way. The ’Vis’ part of the feature
can be selected by brushing the a2 vs. a3 scatterplot in conjunction
with a6 vs. a7. The ’09’ part can be selected by brushing the a4 vs.
a5 scatterplot in conjunction with a6 vs. a7. Neither a2 vs. a3 nor
a6 vs. a7 alone result in a useful hypothesis. Therefore the ’Vis09’
feature is of the form ((a2 ∧ a3)∨ (a4 ∧ a5))∧ (a6 ∧ a7). Such a fea-
ture is almost impossible to find for the human user, even though it is
still rather simple from the viewpoint of the machine. The synthetic
data set contains a third feature defined in attributes a8, a9 which is
easily found and selected interactively. It has been arranged to contain
the neighborhood of the ’Vis09’ feature (see Figure 3(1)). In Figure
3(1) the user has figured out that attributes a8 and a9 might describe
a feature of interest. This is a common situation where one attribute
describes roughly what an engineer is looking for (such as low pres-
sure is roughly related to vortices). The resulting feature in Figure
3(1) is not very sharp though. In Figure 3(2), the user runs the ML
algorithm to search for alternative hypotheses. The best resulting hy-
pothesis has low fitness but the user is able to see that the machine has
found something valuable. In Figure 3(3) the user deactivates genes
on other attributes by toggling the corresponding parts of the machine
hypothesis, and the fitness increases. In Figure 3(4) the user has found
a novel hypothesis. Interactive visual analysis allows the user to relate
the novel hypothesis to the reference hypothesis and generate a good
explanation even though there is some noise left.

At this point, the user has gained some information. However, it
is still unclear if there are alternative hypotheses and so he triggers
another search. In Figure 3(5) the algorithm reveals an alternative hy-
pothesis. In Figure 3(6) the alternative consists of two clauses com-
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Fig. 3. Interaction example. (1) The user has the idea that attributes a8 and a9 describe a feature of interest. The resulting feature is shown
in a rendering to the right. (2) The user runs the machine learning algorithm to search for hypotheses. The best resulting hypothesis has 65%
fitness. The coloring (dark green) shows that attributes a0 and a1 are important in the entire population. (3) The user deactivates genes on other
attributes and the fitness increases. (4) Via interactive visual analysis, the user improves the hypothesis. It is still unclear whether there are
alternative hypotheses. (5) A larger search has found an alternative hypothesis. (6) The alternative explanation consists of two clauses combined
by conjunction (AND). If one of the two clauses is missing, the feature vanishes. (7) The first clause contains the disjunction (OR) of multiple
selections. Attributes a2, a3 select the shape ”Vis” only. (8) Automatic local optimization via hill climbing finds the optimal selections.

bined by conjunction (∧). If one of the two clauses is missing, the
feature vanishes as already discussed above. Figure 3(7): Based on
the interactive framework, the user analyzes the impact of the differ-
ent parts of the hypothesis and is able to understand the relation of
the attributes to the ’Vis’ and ’09’ parts of the feature. Figure 3(8):
Finally, it is desirable to reduce the amount of noise in the selection.
However, this is difficult do by hand. A simple optimization scheme
helps the user to find the optimal selections in relation to the feature of
interest.

4 HYPOTHESES

In this section we describe the formalization of hypotheses and mea-
sures to quantify their properties.

4.1 Definitions

A sample point in the n-dimensional data set is given by the attribute
vector a = (a1, . . . ,an). Each selection S(a) is a mapping from Rn

to fuzzy membership values in the range [0,1]. A data element a is
assigned a value of S(a) = 1 if it is fully selected. A view V (a) is
a mapping that presents a subspace of the attributes to the user and
can have specific interactions to select data points interactively. The
suggested method could potentially combine multiple data selection
metaphors, but we focus on smooth brushing on two-dimensional scat-
ter plots. Without loss of generality, we will restrict these to rectan-
gular areas to simplify the discussion. A single smooth rectangular
selection S(a) can be defined by two rectangular areas R1 ⊂ R2 on the
drawing area of the view (see transparent regions in layers of Figure
4). Each data element is then assigned a fuzzy membership value of
1 if it was mapped onto a position p ∈ R1. A data element has fuzzy
membership value of zero if it is mapped outside of R2 and is assigned
fractional membership value inside the region R2 \R1. We define this
fractional membership value as d(p,∂R2)/(d(p,∂R1) + d(p,∂R2))
with d(x,R) := min{|x− r|,r ∈ R} where ∂ is the boundary opera-
tor. This definition has the benefit of being directly extensible to non-
rectangular selections. Users may specify multiple selections within
a single view which are then combined as fuzzy disjunctions. For
more complex hypotheses, different views can be connected to each
other via fuzzy logic operators. The resulting terms are Boolean ex-
pressions which are transferred into conjunctive normal form. This

modification is necessary, as we bias towards simple, efficient and in-
terpretable terms for both the genetic algorithm and interactive visu-
alizations. With this transformation at hand, we formally define the
hypothesis Ĥ(a) as a conjunction of N clauses Ci(a)

Ĥ(a) :=
N∧

i=1

Mi∨
j

Si j(a)︸ ︷︷ ︸
clauseCi

(1)

where each clause is a disjunction of Mi selections Si j. The straight-
forward way to evaluate Equation 1 is to translate the operators to the
point-wise operations ’minimum’ and ’maximum’. This leads to the
expression

H(a) = minN
i=0(maxMi

j=0 Si j(a)). (2)

Within a clause, a data point is selected according to the largest value
in all contained selections. In the final hypothesis, each data point re-
ceives the minimum selection value of all clauses. Figure 4 illustrates
the quantities defined so far. A clause can be regarded as a layer with
transparent regions that correspond to the disjunctively combined se-
lections. To visualize the selective effect of the clause, we imagine the
data items as spheres that fall through such a layer. In analogy to a
filter process, each sphere is then re-colored depending on the location
it fell through. The color intensity corresponds to the fuzzy selection
value. In this picture, a complete hypothesis is modeled as a stack of
several overlapping layers. The search for an alternative hypothesis
is thus equivalent to the search for a different stack of selective data
filters. To qualify the resulting hypothesis we require new quantities
defined in the next sections.

4.2 Feature Similarity
The feature similarity F (H1,H2) between two hypotheses H1 and H2
measures the point-wise distance between the feature membership val-
ues resulting from Equation 2. We distinguish between selected data
items (fuzzy value > 0) denoted by H+

i := {a|H(a) > 0} and dese-
lected items (fuzzy value= 0) that are given by H−i := {a|H(a) = 0}
with i = 1,2, and compare these two sets independently. This is neces-
sary since the number of points belonging to the feature (H+

i ) can be
a lot smaller than the number of data points outside the feature (H−i ).



Hypothesis
H (a)

Selection
    S (a)

Clause C (a)

R2R1

an

am

Data Elements

Filtered Data Elements

Fig. 4. Fuzzy logic hypotheses. The hypothesis is visualized as a
stack of filter layers (clauses) with partially-transparent regions (fuzzy
selections). The overlapping layers have a selective filter effect on the
data items (spheres) above. While fully selected in the beginning (red),
some of the spheres are being re-colored when falling through the stack.
Less selected items receive higher desaturation, becoming grey if des-
elected.

Using this approach we can compute the directed similarity Fd be-
tween H1 and H2. The first term of Fd in Equation 3 accumulates the
distance of all selected elements, whereas the second term accounts
for the non-selected parts.

Fd(Hi,H j) =
∑H+

i
1−|Hi−H j |
|H+

i |
·

∑H−i
1−|Hi−H j |
|H−i |

F (H1,H2) = min(Fd(H1,H2),Fd(H2,H1)) (3)

4.3 Complexity
The complexity of a hypothesis is a measures for the number of in-
volved views v and the number of selections s in the hypothesis. More
complex hypotheses are conceptually harder to understand. We thus
need an expression, that allows for choosing upper limits for the num-
ber of views and selections, beyond which the complexity of a hy-
pothesis strongly increases. Therefore, the complexity C (H) has the
negative Gaussian shape

C (H) := 1− e
−
(

s
v·σ1

)2
−
(

v
σ2

)2

(4)

where σ1 and σ2 control the number of selections (s) and views (v),
respectively. We set σ1 = 10 and σ2 = 5 for all evaluations in this
paper.

4.4 Individuality
The individuality measures how unique a hypothesis is in the set of all
hypotheses in the current population. For this purpose, we require a
function that compares two hypotheses according to their resemblance

R(H1,H2) :=
1

max(#H1,#H2)
·

#H1

∑
i=0

max#H2
j=0(Rc(Ci,C j)) (5)

where #Hi, i = 1,2 refers to the number of clauses in a hypothesis.
This definition is motivated by the ’stack of filters’ understanding of
a hypothesis as shown in Figure 4. From this viewpoint the resem-
blance of two hypotheses can be understood as the average resem-
blance of filters, where we always compare the two most resembling
filters (clauses). The benefit of this approach is that two hypotheses

limit

Fig. 5. Local ranking. For evaluating the rank of a hypothesis (grey num-
ber on the podiums), the current hypothesis (blue) is competing with its
nearest neighbors in resemblance space. The higher its feature similar-
ity (higher podium), the higher it’s rank. The individuality is then com-
puted as the resemblance to the user’s hypothesis (brown), weighted
with respect to the evaluated rank.

can have high resemblance if only a subset of their genes (selections)
is similar. The resemblance Rc(C1,C2) between two clauses is

Rc(C1,C2) :=
1

max(#C1,#C2)
·

#C1

∑
i=0

max#C2
j=0(Rs(Si,S j)) (6)

where #Ci, i = 1,2, refers to the number of selections in a clause. A
selection S as defined in Subsection 4.1 can be considered as a 2D
fuzzy set with cardinality |S| :=

∫
R×R S(x)dx. The resemblance of two

selections Rs(S1,S2) is now defined as the cardinality of fuzzy set
intersection of S1 and S2 divided by the cardinality of their fuzzy set
union.

Rs(S1,S2) :=
|S1∩S2|
|S1∪S2|

. (7)

This can be understood as dividing the area of the intersection of S1
and S2 by the area of their union.

In order to allow the heuristic algorithm to create populations of
sufficiently diverse hypotheses the following individuality ranking is
of crucial importance. When there are multiple closely resembling hy-
potheses we want to rank them in a way that the one with the locally
highest feature similarity also has highest individuality. Using Equa-
tions 5-7 we first compute the local neighborhood of a given hypoth-
esis H which is defined as the list of hypotheses that are resembling
H most. A hypothesis H ′ is contained in the local neighborhood of H
if it fulfills the threshold condition R(H,H ′)≤Rlimit . This threshold
is set to 0.6 in our evaluations. To calculate the individuality, all hy-
potheses in the local neighborhood are ranked by their feature similar-
ity F with respect to the user’s hypothesis. If the feature similarity of
two hypotheses is equal, the less complex hypothesis receives higher
rank. Figure 5 illustrates the local individuality ranking for a given
hypothesis (blue podium). The resulting rank r is used to define the
individuality I (H) as follows

I (H) := (1−R(H,Huser)) · (1− ε)r (8)

where the resemblance to the user hypothesis Huser is given special
attention. The parameter ε controls the influence of the ranking value
and is set to 0.25 in all our tests.

5 MACHINE LEARNING ALGORITHM

This section discusses our adaptation of a genetic search algorithm
to find alternative hypotheses. A genetic algorithm consists of three
basic steps: selection, mutation and recombination. In the selection
process, the fittest individuals are chosen to be included in the next
population without modification. A mutation step changes an individ-
ual randomly, thus widening the diversity of the population. Finally,
in the reproduction step, individuals of a generation are recombined to
produce members of the next generation.



The population size in our experiments contains 100 hypotheses.
Ten are transferred via selection, 45 via mutation and 45 via repro-
duction. Setting these values can be important when the user wants
different search strategies at different points in the analysis process. In
the beginning, a configuration of high mutation rate, low selection and
large population size might be good. Later, when several good can-
didate hypotheses are already present, low mutation rates and a very
high recombination level can be appropriate to find interesting larger
hypotheses consisting of the genes already present in the population.

5.1 Fitness and Selection

The fitness of an individual is defined in relation to the user hypothesis
Huser and all other hypotheses of the population. We define the fitness
of an individual H as

Fitness(H) = w f ·F (H,Huser)+wi ·I (H)−wc ·C (H). (9)

where w f , wi and wc weight the influence of feature similarity, individ-
uality and complexity, respectively. For the evaluations in the paper,
we set w f = 0.5, wi = 0.3 and wc = 0.2. If the user is not completely
sure about the shape and position of a given feature, there are two
ways to take this into account: First, by a lower weight of the feature
similarity component. Second, by reducing the fuzzy selection values
in the reference hypothesis. We have found that overly complex hy-
potheses can require a large portion of the computational resources.
We thus remove hypotheses of very high complexity scores without a
complete fitness evaluation.

When an individual of the population has to be selected, we employ
an acceptance-rejection method. This way, we achieve a distribution
of random selections that is in accordance to the fitness values. A
random integer i in the range from 0 to the size of the population and a
random real value from the f = [0,1] interval are generated. If the i-th
individual in the population has fitness higher than f, this individual is
selected. Otherwise the process is repeated.

5.2 Mutation

In standard definitions of genetic algorithms, mutations change bits
of the string which defines the individual. We use a more seman-
tic mutation operator to change the elements of a hypothesis. In the
mutation step one individual is chosen as discussed in the previous
section. A selection can mutate in four different ways: edit, move,
crawl and replace. A selection is defined by a number of vertices (8
in the case of rectangles). The edit-mutation either selects one of the
float values which describe the position of one vertex or it changes
the data attribute ai randomly. The move-mutation changes the po-
sition of all vertices of a selection in the same random direction. The
crawl-mutation edits the fuzzy boundaries with higher probability than
the sharp boundaries. The replace-mutation generates a novel random
selection. We use equal probabilities for all four mutation methods.

The Boolean operators in a hypothesis mutate by reduction and flip.
The reduction-mutation randomly removes one of the arguments of
the selected operator. For example ∨(s1,s2,s3) could be reduced to
∨(s2,s3). The flip operator changes a disjunction to a conjunction and
vice versa. We do not use an insertion operation.

5.3 Recombination

In the reproduction step, two individuals are selected as discussed in
Section 5.1 in order to be combined for generating new offspring. We
suggest to represent each hypothesis as an operator tree (see also Sec-
tion 7). For both selected individuals, a node in the operator tree is
chosen and two offspring individuals are created by swapping the sub-
trees attached to the selected nodes. Care has to be taken that also the
subtrees of these operators are split randomly such that the number of
possible recombinations of the two individuals is not artificially lim-
ited. This approach benefits from a continuous evolution of hypothe-
ses, which is in the spirit of interactive control over the evolutionary
process.
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Fig. 6. Performance analysis: The search algorithm has been tested on
synthetic data at different noise levels. The left graph shows the number
of generations needed until a feature similarity of 0.8 has been reached.
The right plot shows the related timing results.
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Fig. 8. Feature comparison: (top) Temperature distribution in a plane.
(A-C) Selected areas correspond to the findings in Figure 7. We can
see that the different variables explain different but partially overlapping
subsets of the fluid.

6 EVALUATION

In this section we describe evaluations of the visual human+machine
learning approach.

6.1 Measurements
This section analyzes the number of generations and the time neces-
sary to find a sharply defined feature inside synthetic volume data.
We have set up a spherical feature in attributes a0 and a1 of a 10-
dimensional data set that consists of 323 voxels. More exactly, for
voxels with v2

x + v2
y + v2

z < 1 the attributes a0, a1 contain random val-
ues in the [0,0.1] interval, all other voxels contain random values in
the [0,1] interval, but either a0 or a1 has to be larger than 0.1. The
alternative hypothesis to be found by the algorithm has been defined
in two other attributes a2 and a3 in the same way. This (as well as the
’Vis09’ example) can be considered as a worst case scenario since a
slight deviation from the correct selection in a2, a3 performs poorly,
whereas in practice, features in CFD data tend to be smoothly defined
such that approximately correct hypotheses already perform well.

To study the robustness of the search algorithm, we have applied
different noise levels to the attribute values. For noise level w we gen-
erate a random value r between −1 and 1 and modify the attribute
value a← a + 0.01 ·w · r. Figure 6 shows the number of generations
and time needed until a feature similarity of 0.8 has been reached. The
algorithm has been rerun 100 times per setting to evaluate the error
bars. While performing well at low noise levels and producing results
after several minutes, the algorithm becomes less reliable the higher
the noise level. This behavior can be expected, as the feature becomes
less defined the more voxels contain random attribute values.

6.2 Case Study: Analysis of a Cooling Jacket
In the following subsection, we discuss an application of the suggested
technique on a real world data set. A detailed description of the cool-
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recirculation areas appear, the fluid transport could be hindered. C: vortex regions could trap hot fluid inside.

ing jacket can be found in previous work [17, 9, 3]. It is sufficient
to know that the most important attribute of this data set is the fluid
temperature. Many simulation variables (19 attributes) are related to
the fluid temperature. Also, there are additional important derived at-
tributes such as the λ2 vortex detector or velocity, pressure and density
gradients. In sum, there are 35 possible attributes to consider inside a
data set consisting of approximately 1.5 million 3D cells.

We start the analysis with the assumption that high temperatures
ranging from 363.0K to 372.151K with a fuzzy border of 1K corre-
spond to a feature (see Figure 7 and 8). A quick initial search with
20 generations and a population of 50 individuals reveals a connection
between high temperature values and a certain range of fluid densities.
We use hill climbing to find the optimal density interval d and reach an
almost exact (97%) feature similarity to the original hypothesis as seen
in Figure 7 (2). Based on this information, the engineer might guess
that the high temperatures are related to the parts of the fluid where
high pressure hinders the hot parts of the fluid to expand. Therefore
we extend our hypothesis to ”high temperature and density in d”, i.e.
high saturation pressure (Figure 7 (3)). After a few minutes of inter-
active analysis it is clear that it is not possible to find related attribute
ranges interactively.

We continue with a larger search and after 300 generations the ma-
chine has generated a large number of suggestions, but none of them
has very high feature similarity. The visualization of global attribute
frequencies shows that selections on certain attributes are very com-
mon in the population though, so we can still assume that there are
hidden features to be found. We focus on the attributes related to
the successful genes and deactivate all other genes from the best se-
lections. Now, a visual comparison of the volume rendered features
related to the three best hypotheses explains the non-perfect feature
similarity: the generated hypotheses are related to three different but
partially overlapping subsets of the fluid. See also Figure 8. Hypoth-
esis A ”density is medium and pressure is high” is actually the expla-
nation the engineer was looking for, but it was impossible to verify
this hypothesis as the only one. There are two other possible expla-
nations B, C for different hot parts in the fluid. There are also sec-
tions where a lot of heat is transferred from the wall, but the material
transport is jammed due to recirculating flow. Also, there are parts
where vortices (”low pressure and λ2 < 0”) are trapping hot parts of

the fluid. This combination of hypotheses is a novel result, which none
of the previous case studies was able to generate since the interplay of
six attributes in the data set (temperature, density, pressure, wall heat
convection, inverse flow and λ2) is almost impossible to find using
interactive analysis alone.

7 IMPLEMENTATION

The presented approach becomes possible since the compute intensive
parts of the fitness evaluation are implemented on the GPU. The op-
erations which require the traversal of all data elements, i.e. the eval-
uation of hypotheses (Equation 2) and feature similarity (Equation 3)
can be implemented in Nvidia’s Cuda [21]. Hypothesis evaluation is a
straightforward data traversal to evaluate a function consisting of min
and max operations. For the required data handling the ’histogram’ ex-
ample available with Nvidia’s Cuda SDK [21] is a good starting point.
Using the Cuda API it is possible to stream chunks of data to the GPU
such that the size of GPU memory is not a limiting factor.

The computation of feature similarity is a simple modification of
the available ’reduction’ example available in the Cuda SDK, where
the computation of the sum is replaced by the term Fd from Equa-
tion 3. The computation of these values and the corresponding data
handling require about 98% of the computation time. The genetic al-
gorithm itself requires less than 1% of computation time and is im-
plemented using the C++ standard template library. An operator tree
based representation of hypotheses simplifies the otherwise compli-
cated operations required by the evolutionary algorithm. Especially
mutation, recombination and the translation of hypotheses to conjunc-
tive normal form is simplified by this approach.

8 CONCLUSIONS, PROBLEMS AND FUTURE WORK

The main goal of this paper is to answer the questions related to the
verification and generation of hypotheses. The outcome is a frame-
work for generating hypotheses by combining human and machine
learning. Instead of replacing the inferential abilities of the human,
the machine stimulates them by producing alternatives which can be
evaluated by the human. A heuristic search algorithm which generates
related features helps the engineer to evaluate his theories and find
alternatives in the vast hypothesis space of multi-variate data. The



generated hypotheses are automatically added to the visualization and
are available for further refinement and search steps.

In the presented framework, a hypothesis is simply a set of fuzzy
selections together with boolean combinations. This simple format is
easily transferred to text and facilitates reporting (e.g. ”temperatures
larger than 360 K coincide with densities in the range 0.3 to 0.5 kg/m3

and negative velocities.”). This is easier to understand than the weights
of a neuronal net for example.

We consider the understandability of the generated hypotheses and
the suggested incremental human+machine learning approach as the
key selling point of the presented work. As Shneiderman has sug-
gested, the approach presented in this paper actually allows the user to
specify what he is looking for. Foremost, the visual human+machine
learning approach respects the human responsibility. The integration
of the machine learning step can actually prevent the user from miss-
ing important relations in the data.

There are several questions remaining. Since it is not possible to
search the vast space of all possible hypotheses we cannot guarantee
that we are not missing an interesting hypothesis. A statistical ap-
proach to measure the decreasing probability that important selections
of a given complexity have been overlooked would be an important
improvement, not only to the presented approach but also to IVA in
general. Secondly, no user study has been performed. The results
discussed in this paper have been generated with a minimum of in-
teraction. We claim that the machine assistance reduces the required
information analysis skills since a lot of work is done by the machine.
We plan to evaluate this the future.

There are several improvements we propose for future work. First,
we have discussed the evaluation of spatial features in three dimen-
sions, but it would be possible to apply the presented technique in a
more general setting, i.e., when features are not structured in space.
Non-spatial features could benefit from the presented approach using
information visualization techniques only. Second, the presented ap-
proach is not limited to one particular gene type. Other visualization
parameters (e.g. a viewpoint or a transfer function) and user inputs
could be included into the learning process. Third, in real world data,
there can be a lot of samples which do not change the fitness of a
given hypothesis. To improve performance it could be sufficient to
evaluate the fitness only for a randomly selected subset of the data.
Fourth, the selections presented in this paper are all based on brushing
scatterplots. The presented approach is extensible to more complex
selections which can be defined differently in various types of views
and modified by appropriate mutation and recombination operators.
Fifth, another interesting set of open questions is related to specialized
visualizations of population development. The analysis could benefit
from visualizations that show the ancestry relations of hypotheses and
the structural similarities of the fittest individuals. This could provide
information about the specific location of selections inside the opera-
tor tree of a hypothesis. Finally, the presented framework is limited to
orthogonal projections. It would be interesting to study if the combina-
tion of the grand tour [2] with visual human+machine learning reveals
additional meaningful hypotheses.
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