
Eurographics Symposium on Point-Based Graphics (2006)
M. Botsch, B. Chen (Editors)

Versatile Virtual Materials Using Implicit Connectivity

Martin Wicke† Philipp Hatt‡ Mark Pauly∗ Matthias Müller† Markus Gross∗

∗ETH Zurich †Ageia Inc.

Abstract

We propose a new method for strain computation in mesh-free simulations. Without storing connectivity infor-
mation, we compute strain using local rest states that are implicitly defined by the current system configuration.
Particles in the simulation are subject to restoring forces arranging them in a locally defined lattice. The orien-
tation of the lattice is found using local shape matching techniques. The strain state of each particle can then be
computed by comparing the actual positions of the neighboring particles to their assigned lattice positions. All
necessary information needed to compute strains is contained in the current state of the simulation, no rest state
or connectivity information is stored. Since no time integration is used to compute the strain state, errors cannot
accumulate, and the method is well-suited for stiff materials.
In order to simulate phase transitions, the strain computation can be integrated into an existing particle-based
fluid simulation framework. Implementing phase transitions between liquid and solid states becomes simple and
elegant, since no transfer of material between different representations is needed. Using the current neighborhood
relationships, the model provides penalty-based inter-object and self-collision handling at no additional compu-
tational cost.

1. Introduction

Physical simulations are widely used in computer anima-
tion. As more and more computing power is available on
commodity hardware, simulations have also started to re-
place or enhance scripted animations in computer games. A
broad range of materials, from smoke and fluids to elastic
and rigid solids is simulated in order to avoid tedious man-
ual animation. Naturally, each class of materials is simulated
using custom data structures that have proven their utility
for the problem at hand. For instance, Eulerian grids have
evolved as the preferred simulation domain for fluids and
smoke, while Lagrangian meshes are usually used for simu-
lation of deformable or rigid solids.

As more and more different simulated materials are
part of one animation, questions of interaction natu-
rally arise. Two-way interaction between solids and flu-
ids has been thoroughly researched, for example in
[Ben92, MST∗04, GSLF05]. Another difficult area is the

† {grossm,pauly,wicke}@inf.ethz.ch
‡ {hattp,mmueller}@ageia.com

treatment of materials which do not clearly belong to
any category, such as highly viscous or viscoelastic fluids.
[GBO04, KAG∗05, CBP05] have extended Eulerian and La-
grangian fluid simulations to include elastic stresses.

The problem of phase transitions is even more involved,
since adding mass to one representation and removing it
from another poses problems for the respective simulations.
[LIGF05] treat the case of melting or burning, where a solid
dissolves and mass is inserted into the fluid simulation. The
different data structures for surface, fluid simulation and de-
formable or rigid body simulation have to be synchronised
in order to allow mass transfer between the coupled simula-
tions.

In this paper, we present a virtual material that is highly
versatile. The possible material properties range from those
of a stiff elastic, brittle solid to those of a low-viscous fluid.
Starting from a particle-based fluid simulation, we add elas-
tic forces to the simulation by forcing neighboring particles
to positions on a locally defined lattice. Inspired by crystal-
lography, the lattice is a hexagonal grid in two dimensions,
and a cubic closest packed structure in three dimensions. Its
orientation is determined using local shape matching similar

c© The Eurographics Association 2006.

M. Wicke et al. / Versatile Virtual Materials Using Implicit Connectivity

to [MHTG05]. In no part of the simulation, explicit informa-
tion on connectivity is needed. The spatial neighborhood re-
lationships between particles in the current simulation state
implicitly define a connectivity that is used for strain compu-
tation. As will be shown, the absence of a simulation mesh
or rest state greatly simplifies the simulation of melting and
freezing processes. Since our model can handle fluids as
well as solids, material does not have to be transferred be-
tween representations. The neighborhood information com-
puted during the simulation can be used to provide a sim-
ple penalty-based collision handling scheme at no additional
computational cost.

The remainder of this paper is structured as follows: We
first discuss related work before presenting our simulation
model in Section 3. The materials simulated using our tech-
nique have inherent properties that are described in Sec-
tion 4. One of the greatest advantages of our method is the
simple integration of phase transitions, as detailed in Sec-
tion 5. Section 6 treats surface reconstruction, before we
show some results in Section 7. Section 8 discusses strengths
and limitations of our approach and gives an outlook on fu-
ture research directions.

2. Related Work

Recent work has greatly extended the range of materials that
can be simulated using Eulerian fluid simulation methods.
[CMHT02] use extreme viscosity in model plastic, nonelas-
tic material. [CMT04] constrain parts of the fluid to rigid
motions and can thus simulate rigid bodies within a fluid
simulation. Coupling Eulerian fluid simulations with other
simulation types is challenging. [LIGF05] simulate melting
and burning by transferring material between a Lagrangian
simulation grid and the simulation grid of the fluid simula-
tion. [GSLF05] treat the interaction of thin shells or cloth
with a Eulerian fluid simulation.

Elastic or visco-elastic materials require the computation
of strain. [GBO04] achieve this for Eulerian fluid simula-
tions by integrating strain rates. The integration errors limit
the stiffness of the simulated materials.

Particle-based methods are always Lagrangian methods,
hence the difference between solid and fluid simulation is
less pronounced. [MKN∗04] propose a point-based elas-
ticity model. Using extreme plasticity, the behaviour of
a viscous fluid can be modeled. [KAG∗05] start from a
smoothed particle hydrodynamics (SPH) simulation and
measure strain by storing and modifying a rest state, includ-
ing particle connectivity. In [CBP05], dynamically generated
springs are used to model elasticity in an SPH simulation.
A similar method was first introduced by Terzopolous et al.
[TPF89] who enhanced a model inspired by molecular dy-
namics with explicit connectivity in order to model elastic-
ity.

The method that is conceptually closest to our approach is

simulation of elastic materials and viscous fluids using par-
ticles and Lennard-Jones potentials [Ton98]. Similar to our
method, no stored connectivity between particles is needed.
The rest state of each particle is implicitly given as the near-
est minimum of the potential function defined as the super-
position of the particle potentials. In contrast, our approach
uses shape matching to determine the rest state. In practice,
this is much more stable than reliying on the potential func-
tion alone. It also allows for larger deformations and larger
integration timesteps. Müller et al. [MHTG05] also present a
deformation framework based on shape matching, however
relying on stored node connectivity.

3. Simulation Model

Our aim is to simulate materials ranging from fluid to solid.
Similar to [GBO04, KAG∗05], we will use a fluid simulation
and enhance it with the necessary additional forces. Since
our simulation is particle-based, we use a variant of XSPH
[Mon89]. For a good introduction to SPH methods, we refer
the reader to [Mon05].

3.1. Implicit Rest State

In order to introduce elastic restoring forces into a fluid sim-
ulation, we need to compute strain. Assuming an initially
regular sampling, we can reconstruct the appropriate rest
state from the current simulation state. The rest state is im-
plicit to the system configuration at any point of the simula-
tion. We extract the local rest state information using shape
matching. Using the rest state, we can easily compute the
strain tensor, which in turn can be used in any standard elas-
ticity model.

In a crystal lattice, the rest state of the neighbors of any
atom is determined by the orientation of the lattice and the
lattice type. We use a closest sphere packing for our lattice.
In two dimensions, this is a hexagonal grid. In three dimen-
sions, we use the cubic closest packed structure, since it has
a higher symmetry than the hexagonally closest packed lat-
tice. An important property of closest sphere packings is that
they are a stable state of particle-based fluid simulations.

A cubic closest packed lattice around the origin consists
of the points in the set

L =

{

D
[

lx̂+m
(1

2 x̂+
√

3
4 ŷ
)

+n
(1

2 x̂+
√

1
12 ŷ+

√

2
3 ẑ
)]

}

,

(1)
with integers l,m,n ∈ Z. The vectors x̂, ŷ, and ẑ are an or-
thonormal basis of R

3. D denotes the inter-particle distance
in the lattice. See Figure 1 for an illustration.

In our simulation, elastic forces only depend on the cur-
rent neighborhood of any particle. Each particle in the sim-
ulation will exert elastic forces on the particles that are its
neighbors. This set of neighbors is determined by the SPH
weight function, which is nonzero only within a certain ra-
dius around each point.

c© The Eurographics Association 2006.

M. Wicke et al. / Versatile Virtual Materials Using Implicit Connectivity

(a) (b)

Figure 1: Closest lattice points to a particle. (a) 2D lattice.
(b) 3D lattice. Shown are the center particle (green) as well
as the lattice positions of its immediate neighbors (red).

3.2. Finding the Rest State

One simulation step can be summarized as follows: We first
assign lattice points to particles in the neighborhood. Then,
a linear tranformation A is computed such that the trans-
formed grid best matches the particle locations. Applying
only the rigid part of A to the grid yields a rest state for the
neighboring particles.

We use the grid transformation from last timestep, A(t−1),
to assign lattice points to particles. For each particle p j in the
neighborhood of pi, we assign the lattice point li j which is
closest to ri j = (p j −pi) in the untransformed lattice.

li j = argmin
l∈L

∥

∥

∥

∥

l−
(

A(t−1)
i

)−1
ri j

∥

∥

∥

∥

2

(2)

Due to the structure of the grid, this minimization can be eas-
ily solved by enumerating the nearest points in L. Note that it
is possible that several neighboring particles are assigned to
the same lattice point. In such a case, we only assign the par-
ticle that is closest to the lattice point. The forces generated
by this neighborhood will not be applied to the free particle.

After all points are assigned, we compute the transforma-
tion A such that the transformed grid best matches the actual
particle positions in a least squares sense.

Ai = argmin
A∈R3×3

∑
j

wi(p j)‖A−1ri j − li j‖
2 (3)

Here, wi j determines the influence of p j on the matching.
The weights should be a smooth function with local support.
We use the SPH kernel functions as weight functions: wi j =
k(‖pi −p j‖).

As pointed out in [MHTG05], the solution to this mini-
mization is

Ai =

(

∑
j

wi jri jlTi j

)(

∑
j

wi jli jlTi j

)−1

(4)

In order to obtain the rigid part of the transformation, we
compute a polar decomposition of Ai = RiSi. The rotational

part Ri represents the rigid motion of the lattice. The rest
state gi j of a particle p j with respect to pi is then

gi j = pi +Rili j. (5)

3.3. Computing Strain

Having computed rest states for all neighboring particles,
we can compute an estimate for the strain tensor at a
particle pi. The linear strain tensor is defined as ε =
1
2

(

∇uT +(∇uT)T
)

, where u is the displacement of the ma-
terial. We will discretize the partial derivatives of the dis-
placement using one-sided differences. For the y component
of the gradient of ux at pi, a particle p j contributes

(

dux

dy

)

i j
=

(ri j −gi j) · x̂
gi j · ŷ

, (6)

the other derivatives are computed accordingly. Since sev-
eral particles influence the strain state of pi, we weight the
contributions of the particles:

(

dux

dy

)

i
=

∑ j wi jgi j · ŷ
(

dux
dy

)

i j

∑ j wi jgi j · ŷ
=

∑ j wi j(ri j −gi j) · x̂
∑ j wi jgi j · ŷ

(7)

Thus, the strain can be computed from the knowledge of
rest state and current particle positions. Note that in a regular
setting, (7) yields central differences. Using the same idea,
nonlinear strain can be approximated. The strain can then
be used to apply any standard elasticity model. In the next
section, we describe a simplified model that directly uses the
implicit rest state.

3.4. Elastic Restoring Forces

For each particle pi, we compute elastic forces for all neigh-
bors p j that pull p j closer to its rest state position gi j .

Fi j = w(li j)k(gi j − ri j) (8)

Here, k is a stiffness constant and w(li j) a smoothly decaying
weight function, representing the diminishing influence of pi
on points that are not direct neighbors. In order to enforce
preservation of linear momentum, we apply 1

2 Fi j to p j and
− 1

2 Fi j to pi.

This introduces a torque τi = 1
2 ∑ j(p j − ci)×Fi j − (pi −

ci)×Fi j , measured around the center of mass ci of pi and
its neighbors p j . As this torque would violate the preserva-
tion of angular momentum, we redistribute it onto the p j by
adding a torque correction force to p j .

Fτ
i j =

wi j

∑ j wi j‖p j − ci‖
τi ×

p j − ci

‖p j − ci‖
(9)

Again, the weighting ensures that the influence of a particle
smoothly decays to zero.

c© The Eurographics Association 2006.

M. Wicke et al. / Versatile Virtual Materials Using Implicit Connectivity

i i

(a) (b)

Figure 2: Assigning lattice points and shape matching. (a)
Neighboring particles (red) are assigned to lattice points
(blue) using the local grid transformation At−1

i . (b) Shape
matching: Ai is computed such that the grid points (black)
best match the particle positions.

3.5. Damping

For systems with high stiffnesses, damping is essential.
While implicit integration methods include numerical damp-
ing by construction, explicit integration requires an explicit
damping model even if an undamped system is to be sim-
ulated. Particle fluid simulations are damped using viscos-
ity, which is not sufficient when elastic forces are simulated.
While damping should remove high-frequency oscillations
from the system, it should not affect rigid body motion. We
therefore apply damping only to those components of the
particle velocities that do not correspond to locally rigid mo-
tions.

Consider a particle pi and its neighboring particles p j . We
first compute the average velocity vi at the center of mass ci
and the angular velocity ωi around ci. Using the SPH inter-
polation framework, we find

vi = ∑
j

w(‖ci −p j‖)
m j

ρ j
v j (10)

ωi = ∑
j

w(‖ci −p j‖)(v j −vi)× (p j − ci) (11)

Here, w(·) denotes the SPH weight function used in the fluid
simulation, and ρ j is the density at the positon p j . The den-
sity is computed during the fluid simulation.

We can now split the velocity of each of the particles p j
into a rigid and a nonrigid part.

v j = vn
i j +vr

i j = vn
i j +vi +ωi × (p j − ci) (12)

where vr
i j is the locally rigid part of v j and vn

i j denotes the
particle’s individual nonrigid movement, each with respect
to the average angular and linear velocities of the neighbor-
hood i.

For any particle p j , we only want to damp the locally non-
rigid modements vn

i j for all reference systems i that p j is in-
fluenced by. We thus use the SPH average of the nonrigid
velocities in each of the neighborhoods and obtain a damp-

ing force

Fd
j = −ηvn

j = −η∑
i

wi j
mi

ρi
vn

i j, (13)

where η is a damping constant. In a simulation with timestep
∆t, η should not exceed mi

∆t , where mi is the mass of particle i.
If η is greater than the above value, not only are the nonrigid
velocities completely damped out, new nonrigid movement
is introduced in the subsequent integration step.

4. Inherent Material Properties

The virtual material as described above exhibits a wide range
of material properties, depending on the parameter settings.
However, some properties are inherent to the approach cho-
sen, and shall be discussed here.

4.1. Plasticity

Since no rest state information is stored, the rest state of the
material has to be inferred from the current state. All infor-
mation on the rest state is thus contained in the positions of
the current neighbors of a particle. Since the particle does not
store which particles were its initial neighbors, the method
has no way of knowing if the particles in the neighborhood
have changed. In that case, there are no restoring forces for
the original particles. Instead, they are integrated into their
new neighborhoods. See Figure 3 for an illustration.

1

2

3

i

1

2

3

i

(a) (b)

Figure 3: Inherent plasticity: Since we do not store connec-
tivity, particle i has no way of distinguishing between the
situations shown above. Its neighborhood is limited to the
blue region. There will be no restoring forces for particles 1,
2 and 3, the deformation is plastic.

This also means that our virtual material cannot be
stretched arbitrarily. Consider a pair of neighboring parti-
cles pi and p j . A permanent plastic deformation occurs if
p j is displaced far enough such that different lattice point
in is closest to its current position, or even leaves the neigh-
borhood of pi altogether. Since our material has no memory
and does not know the “true” rest state of p j , these changes
are not counteracted by restoring forces. However, since the
particles are assigned to lattice points using the local defor-
mation from the last timestep, this situation can only occur
if p j changes its position radically within one timestep, or if
it leaves the neighborhood of pi due to large deformations.
Figure 4 (b) shows plastic deformation in a 2D simulation.

c© The Eurographics Association 2006.

M. Wicke et al. / Versatile Virtual Materials Using Implicit Connectivity

(a) (b) (c)

Figure 4: Particles in 2D simulations of different material
properties. (a) An elastic cube bounces off the groud plane.
(b) Rest state of a plastic cube after falling. (c) Fracture. The
cube is fixed to the Wall and fractures under the influence
of gravity. Darker particles have a docking rate λd = 0 for
some of their lattice points. They form the boundary of the
solid.

4.2. Fracture

For a fluid, topological changes are temporary. As soon as
different parts of the fluid rejoin, they behave as one. The
situation is different for solids. Fracture permanently breaks
the material, even if the different parts of the solid come into
contact, they will not reunify.

In our basic model, however, as soon as a particle enters
a neighborhood of another particle, it will be integrated into
the lattice. Thus, cracks once formed will close again when
the edges come into contact.

To avoid this behaviour, each particle stores which of its
lattice points are allowed to be occupied by other particles.
We use a probabilistic model to account for fault and weak-
nesses in the material. In order to be able to model prob-
abilistic properties independent of the simulation timestep,
we store a docking rate λd for each lattice point. If a par-
ticle is available in one timestep, the probability that it is
assigned to the lattice point is given by a Poisson process:
Pd = 1− e−λd ∆t . If a lattice point is not assigned to a par-
ticle during a timestep, the docking rate of this lattice point
is reduced by ∆λd . If it is assigned, the docking rate is in-
creased by ∆λd . A stress criterion can be applied to addi-
tionally modify λd or Pd . Figure 4 (c) shows fracturing in a
2D simulation.

4.3. Multiple Objects

We can easily extend the algorithm to handle multiple dis-
tinct objects. Each particle carries an object ID, and the
shape matching as well as the force computation are con-
fined to particles with the same object ID.

If we restrict forces acting between different objects to
repulsive forces instead of disallowing them altogether, the
result is a simple penalty-based collision detection scheme.
If pi and p j are particles from different objects, we apply a
modified interaction force F ′

i j

F′
i j =

{

p j−pi
‖p j−pi‖

·Fi j
p j−pi

‖p j−pi‖
(p j −pi) ·Fi j > 0

0 otherwise
(14)

Figure 5: Several colliding stiff elastic objects. Inter-object
collisions are handled as described in Section 4.3, no addi-
tional collision handling is necessary.

Of course, more elaborate collision handling schemes can
be implemented for objects within our framework, but the
implicit collision handling provided comes at no additional
cost and has proven sufficient in most situations. All scenes
shown in this paper were computed using only the inher-
ent collision handling to resolve inter-object collisions and
solid-fluid interaction.

5. Phase Transitions

One of the greatest advantages of our simulation method is
the simple integration of phase transitions. Since both flu-
ids and elastic solids can be handled within our framework,
phase transitions can be implemented without switching rep-
resentations. Since no rest states are stored, no artificial rest
state information has to be generated in the case of freez-
ing. Remeshing, mesh erosion and other implementational
hurdles are avoided entirely.

Note that we do not aim at a correct simulation of the
physical process of phase transitions. Our goal is to provide a
simple means to change the behaviour of a material between
liquid to solid.

The only difference between solids and fluids in our
framework is the fact that particles in a solid are subject
to elastic restoring forces while particles in the fluid phase
are not. Thus, melting can be achieved simply by reducing
the elastic forces as well as the associated damping until in
the completely fluid phase, the particle is not influenced by
lattice-induced forces any more.

An arbitrary criterion can be used to determine when a
phase transition should occur. Useful criteria are based on
position in space, the simulation time, or physical properties
like temperature. Heat conduction and other transport phe-
nomena can be simulated using the already available SPH

c© The Eurographics Association 2006.

M. Wicke et al. / Versatile Virtual Materials Using Implicit Connectivity

framework [Mon05]. We use a probabilistic approach simi-
lar to the one described in Section 4.2. In our framework, the
melting rate is computed from temperature alone:

λm = max(0,λ0
m(T −Tm)), (15)

where T is the temperature of a particle and Tm is the melting
point of the material.

The inverse process of freezing works similarly. However,
it is advisable to further restrict when the phase transition
may occur. If a fluid particle is close to a solid, it has a
probability to freeze and thus integrate into the lattice of the
solid. This probability is dependent on the relative velocity
of the particle to its solid neighbors (if any), and the dis-
tance of the fluid particle to the next available lattice point,
as well as other environmental factors as described for melt-
ing. This statistical approach mimicks the freezing process
without the overhead of a full-blown physical simulation
[KL03, KHL04].

To compute the freezing rate for a particle pi with neigh-
bors p j , we use a criterion based on temperature T , number
of solid neighbors n, their average velocity v, and the accu-
mulated lattice forces.

λ f = max(0,λ0
f (Tf −T)(n−n0)·

min(1,
vmax

‖vi−v‖)min(1,
Fmax

‖∑ j Fi j‖
))

(16)

Tf is the freezing temperature of the fluid, which we usu-
ally set to zero. n0 denotes the minimum number of solid
neighbors. If this parameter is set to zero, particles can freeze
spontaneously, given that the other parameters allow it. Oth-
erwise, particles can only freeze to already solid material.
The last term diminishes the freezing rate of a particle if the
accumulated lattice forces exceed a given maximum. This
is a simple measure of how good the current position of the
particle fits into the lattice of a neighboring solid. Also, if the
average velocity of the surrounding solid particles differs too
much from the particles’ velocity, it is unlikely to freeze.

6. Surface Representation

If the simulated material is liquid or solid, a surface needs
to be extracted from the simulation data. An easy way to
do so is using marching cubes [LK87] to extract an implicit
surface from a potential field that is the superposition of po-
tential fields attached to each of the particles. The blobbies
[Bli82] approach or variants thereof [ZB05] yield good sur-
faces provided that the sampling density is high enough.

As the name suggests, the implicit functions defined as
above are blobby. Although this is not a problem if the sam-
pling with particles is dense enough, sharp features created
by fracture cannot be reproduced faithfully in low-resolution
simulations. In these situations, explicit surface representa-
tions, such as sampled surfaces [KAG∗05], or semi-implicit
approaches such as particle level sets [EFFM02] could lead
to crisper surfaces retaining sharp features. As all necessary

information is stored with the particles, it is not a problem to
use these surface reconstruction methods together with our
simulation model.

For solid objects that are known not to fracture or undergo
plastic deformation, we can use a simple skinning technique
to deform the surface. Similar to [WSG05], each particle pi
stores the a local position of nearby surface points v j or mesh
vertices in its local coordinate system. During initialization
the local coordinates of v j with respect to pi are computed
as

v i
j = v0

j −p0
i . (17)

When the object deforms, the current grid transformation
matrix Ai of the particle is applied to the stored local ver-
tex positions. This yields deformed local surface points v j

i .

v′ij = Aivi
j (18)

The deformed position of the surface point is a weighted sum
of the different local surface points. In our implementation,
we use the SPH weight function.

v′j = ∑
i

w(pi −v j)
(

v′ij +pi

)

(19)

This method yields a smooth surface for deforming objects.
Foldovers and self-intersections that plaque skeleton-based
skinning approaches are not a problem in this setting unless
the particle sampling is extremely coarse.

7. Results

The examples in this paper were computed on a P4 3GHz,
and rendered using POV-Ray. Simulation times given ex-
clude rendering.

Figure 5 shows nine stiff-elastic dice. Each die is sampled
with 246 particles. The simulation time is approximately 19
seconds per frame. The dice are rendered using a textured
surface mesh which is moved along with the particles using
the skinning method described in Section 6.

In Figure 6, a viscous fluid freezes to a cooled rod. Fluid,
ice and rod are modeled using the presented method. The
surface of the cylinder is attached to its particles using
skinning, the surfaces for fluid and ice are computed using
marching cubes. The cylinder is sampled with 1606 parti-
cles, fluid and ice use up to 6000 particles. Average simu-
lation time in this example is approximately 18 seconds per
frame.

Figure 7 shows an elastic bunny being dropped and melt-
ing on the ground. The model is sampled using 9871 parti-
cles. The surface was reconstructed using marching cubes.
Average simulation time is around 17 seconds per frame.
Heat transfer is simulated as a diffusion process.

c© The Eurographics Association 2006.

M. Wicke et al. / Versatile Virtual Materials Using Implicit Connectivity

Figure 6: Alien goo freezing on a cooled rod. The rod as well as the viscous fluid are modeled using our method. The freezing
criterion from Equation 16 is used to trigger phase transitions of individual particles. The temperature of the rod is fixed, heat
transport is modeled as a diffusion process.

8. Discussion and Future Work

We have presented a method for computing elastic strain
without storing rest states or connectivity. The rest state that
is needed to compute a strain tensor can be inferred from the
current state of the simulation. This method offers several
advantages: Since only one representation is used for flu-
ids as well as solids, no transfer of material between differ-
ent representations is needed. Freezing can be implemented
without making up a rest state for the newly frozen material.

Thus, a broad range of material properties from stiff elas-
tic solids to fluids can be modeled. All of these materials
exhibit the material properties described in Section 4. In par-
ticular, this means that materials simulated using our model
deform plastically under large or abrupt deformations as de-
scribed in Section 4.1, and fracture if stretched too much.
The fracture process does not pose any problem for the sim-
ulation model, however, the surface reconstruction involv-
ing fracture is challenging. Since no explicit fracture events
are generated by the model and no connectivity informa-
tion is available, established techniques such as [MBF04] or
[PKA∗05] cannot be easily adapted. One future reseach di-
rection will be to generate such events ex post, and apply that
knowledge to a surface reconstruction technique that grace-
fully handles fracture in the underlying material.

Since the inherent material properties described in Sec-
tion 4 are present in all materials simulated using the pro-
posed approach, our method is limitated in that it cannot
handle materials that do not exhibit these properties, most
prominently extremely deformable yet non-plastic materials
(e.g. chewing gum, certain types of rubber).

The assumed regular sampling does introduce discreti-
sation artifacts when sampling boundaries. Since a high-
resolution mesh is used for rendering, this is not noticeable
visually. However, for tactile feedback or other applications
that need high-resolution collision detection, this limitation
can pose problems. A possible solution is to develop a mul-
tiresolution version of the presented algorithms. This would
also greatly help for a more realistic simulation of low vis-
cosity fluids.

Stiff materials impose increasingly severe limitations on
timesteps, and simulating large scenes with quasi-rigid ob-

jects can become unfeasible. Although we found that very
stiff materials such as seen in Figure 5 can be simulated us-
ing explicit integration, we plan to research the possibilities
of implicit integration for this method. This would greatly
alleviate timestep restictions.

References

[Ben92] BENSON D. J.: Computational Methods in La-
grangian and Eulerian Hydrocodes. Comput. Methods
Appl. Mech. Eng. 99, 2-3 (1992), 235–394. 1

[Bli82] BLINN J. F.: A Generalization of Algebraic Sur-
face Drawing. pp. 235–256. 6

[CBP05] CLAVET S., BEAUDOIN P., POULIN P.: Particle-
based Viscoelastic Fluid Simulation. In Proceedings
of the Symposium on Computer Animation ’05 (2005),
pp. 219–228. 1, 2

[CMHT02] CARLSON M., MUCHA P. J., HORN R. B. V.,
TURK G.: Melting and Flowing. In Proceedings of the
Symposium on Computer Animation ’02 (2002), pp. 167–
174. 2

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid
Fluid: Animating the Interplay Between Rigid Bodies and
Fluid. In Proceedings of SIGGRAPH ’04 (2004), pp. 377–
384. 2

[EFFM02] ENRIGHT D., FEDKIW R., FERZIGER J.,
MITCHELL I.: A Hybrid Particle Level Set Method for
Improved Interface Capturing. Journal of Computational
Physics 183 (2002), 83–116. 6

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN

J. F.: A Method for Animating Viscoelastic Fluids. In
Proceedings of SIGGRAPH ’04 (2004), pp. 463–468. 1,
2

[GSLF05] GUENDELMAN E., SELLE A., LOSASSO F.,
FEDKIW R.: Coupling Water and Smoke to Thin De-
formable and Rigid Shells. In Proceedings of SIGGRAPH
’05 (2005), pp. 973–981. 1, 2

[KAG∗05] KEISER R., ADAMS B., GASSER D., BAZZI

P., DUTRÉ P., GROSS M.: A Unified Lagrangian Ap-
proach to Solid-Fluid Animation. In Proceedings of the
Symposium on Point-Based Graphics ’05 (2005), pp. 125–
133. 1, 2, 6

c© The Eurographics Association 2006.

M. Wicke et al. / Versatile Virtual Materials Using Implicit Connectivity

Figure 7: A chocolate bunny falls, then melts on the hot
desert sand.

[KHL04] KIM T., HENSON M., LIN M. C.: A Hybrid
Algorithm for Modeling Ice Formation. In Proceedings
of the Symposium on Computer Animation ’04 (2004),
pp. 305–314. 6

[KL03] KIM T., LIN M. C.: Visual Simulation of Ice
Crystal Growth. In Proceedings of the Symposium on
Computer Animation ’03 (2003), pp. 86–97. 6

[LIGF05] LOSASSO F., IRVING G., GUENDELMAN E.,
FEDKIW R.: Melting and Burning of Solids into Liq-
uids and Gases. IEEE Trans. Visualization and Computer
Graphics in press (2005). 1, 2

[LK87] LORENSEN W., KLINE H. E.: Marching Cubes:
A HighResolution 3D Surface Construction Algorithm. In
Proceedings of SIGGRAPH ’87 (1987), pp. 163–170. 6

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A Virtual
Node Algorithm for Changing Mesh Topology During
Simulation. In Proceedings of SIGGRAPH ’04 (2004),
pp. 385–392. 7

[MHTG05] MÜLLER M., HEIDELBERGER B.,
TESCHNER M., GROSS M.: Meshless Deforma-
tions Based on Shape Matching. In Proceedings of
SIGGRAPH ’05 (2005), pp. 471–478. 2, 3

[MKN∗04] MÜLLER M., KEISER R., NEALEN A.,
PAULY M., GROSS M., ALEXA M.: Point Based Ani-
mation of Elastic, Plastic and Melting Objects. In Pro-
ceedings of the Symposium on Computer Animation ’04
(2004), pp. 141–151. 2

[Mon89] MONAGHAN J. J.: On the Problem of Pene-
tration in Particle Methods. Journal of Computational
Physics 82 (1989), 1–15. 2

[Mon05] MONAGHAN J. J.: Smoothed Particle Hydrody-
namics. Reports on Progress in Physics 68 (2005), 1703–
1759. 2, 6

[MST∗04] MÜLLER M., SCHIRM S., TESCHNER M.,
HEIDELBERGER B., GROSS M.: Interaction of Fluids
with Deformable Solids. Journal of Computer Animation
and Virtual Worlds 15, 3-4 (July 2004), 159–171. 1

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ

P., GROSS M., GUIBAS L. J.: Meshless Animation of
Fracturing Solids. In Proceedings of SIGGRAPH ’05
(2005), pp. 957–964. 7

[Ton98] TONNESEN D.: Dynamically Coupled Particle
Systems for Geometric Modeling, Reconstruction, and
Animation. PhD thesis, University of Toronto, 1998. 2

[TPF89] TERZOPOLOUS D., PLATT J., FLEISCHER K.:
Heating and Melting Deformable Models (From Goop to
Glop). In Proceedings of Graphics Interface ’89 (1989),
pp. 219–226. 2

[WSG05] WICKE M., STEINEMANN D., GROSS M.: Ef-
ficient Animation of Point-Based Thin Shells. In Proceed-
ings of Eurographics ’05 (2005), pp. 667–676. 6

[ZB05] ZHU Y., BRIDSON R.: Animating Sand as a Fluid.
In Proceedings of SIGGRAPH ’05 (2005), pp. 965–972. 6

c© The Eurographics Association 2006.

