
Volume rendering of smoke propagation CFD data

Oliver Staubli1 Christian Sigg1 Ronald Peikert1 Daniel Gubler2 Markus Gross1

1ETH Zürich∗ 2Air Flow Consulting†

Figure 1: Six timesteps of smoke emission from a fire inside a hall. The smoke propagation is simulated by computational fluid dynamics and
lit with an absorbtion and limited diffuse scattering-based lighting model. Illuminated exit signs shine through dense smoke, which is modeled
by adjusting the transfer function in front of exit signs.

ABSTRACT

The evacuation of buildings in the event of a fire requires careful
planning of ventilation and evacuation routes during early archi-
tectural design stages. Different designs are evaluated by simulat-
ing smoke propagation using computational fluid dynamics (CFD).
Visibility plays a decisive role in finding the nearest fire exit. This
paper presents real-time volume rendering of transient smoke prop-
agation conforming to standardized visibility distances. We visu-
alize time dependent smoke particle concentration on unstructured
tetrahedral meshes using a direct volume rendering approach. Due
to the linear transfer function of the optical model commonly used
in fire protection engineering, accurate pre-integration of diffuse
color across tetrahedra can be carried out with a single 2D texture
lookup. We reduce rounding errors during framebuffer blending by
applying randomized dithering if high accuracy frame buffers are
unavailable on the target platform. A simple absorption-based light-
ing model is evaluated in a preprocessing step using the same ren-
dering approach. Back-illuminated exit signs are commonly used
to indicate the escape route. As light emitting objects are visible
further than reflective objects, the transfer function in front of illu-
minated exit signs must be adjusted with a deferred rendering pass.

CR Categories: I.3.8 [Computer Graphics]: Applications; J.2
[Applications]: Physical Sciences and Engineering—Engineering.

Keywords: volume rendering, flow visualization.

1 INTRODUCTION

Every year, 4 million fires occur worldwide. As a result, 15,000
people are killed and damages totalling 70 billion USD are incurred.

Contrary to what one might think, the deaths are rarely caused by
the flames. In most cases, the victims are poisoned by the smoke.
The smoke not only poisons people, it also causes the majority of
the property damage, estimated at 70%. Therefore, fire safety has
become more and more important during the architectural planning

∗e-mail:staubli@itdesign.ch, sigg,peikert,grossm@inf.ethz.ch
†e-mail:gubler@afc.ch

of a building. In the event of a fire the first priority is to remove the
smoke from the building, thereby enabling the people to quickly
and safely find the fire exits. In addition, the rescue of people
trapped within the building and effective fire fighting is dependant
on the removal of smoke.

To assess smoke removal concepts and to prove the efficiency
of smoke removal measures to guarantee a safe evacuation and a
safe operation of the fire rescue staff, the visibility in a building is
a key parameter. In response to market demands for improved fire
safety, a new modeling technique for fire and smoke simulation has
been developed. The technique is based on Computational Fluid
Dynamics (CFD). For smoke propagation inside closed buildings,
buoyancy of hot air and heat dissipation are important aspects of the
simulation. Based on several simulated fire scenarios, the ventila-
tion can be optimized to guarantee effective removal of smoke. The
output of a CFD fire-simulation is a distribution of smoke concen-
trations within the room. Using today’s standard post-processing
software (e.g. Fluent, Ansys CFX, Ensight), it is possible to visu-
alize the distribution of smoke concentration as color coded slices
through the volume data or as an iso-surface. Two examples are
shown in Figure 2.

The distance of visibility in uniformly distributed smoke is di-
rectly coupled to the smoke concentration. The iso-surface render-
ing clips the smoke at a certain level (e.g. visibility of more than
10m), which only gives a very crude approximation of real visi-
bility for two reasons. First, visibility will still be limited outside
the isosurface and second, the visibility is evaluated only locally
assuming uniform smoke distribution. An assessment of the visi-
bility in various directions, considering different lighting situations
or illuminated signs etc. along an escape route is not possible.

Also, the interpretation of iso-surface illustration or contour plots
is very difficult for non-experts, such as architects. The goal of
this project was to apply well-known methods to visualize complex
CFD data from a commercial CFD code with volume rendering and
to create a simple and productive software tool.

We use an adoption of unstructured direct volume rendering,
which incrementally composes transmittance and colors in visibil-
ity order to the final image using the computational power of mod-
ern graphics cards. Direct volume rendering has proven to be an
effective rendering technique for volumetric data in many different
fields of application. One of the few areas where direct volume ren-
dering does not play a major role yet is flow visualization. Reasons
for this can be found in the lack of clearly separated structures, in



Figure 2: Current visualization techniques of smoke concentration
inside a mall. Top: contour plot of slices through smoke concentra-
tion and corresponding local visibility distance. Bottom: iso-surface
of smoke concentration 1g/m3. Inside this surface the visibility is less
than 10m, outside it is more than 10m but not unlimited.

the predominance of vector-valued data and in the more abstract
meaning of the transfer functions. The visualization of smoke con-
centration data, however, is a case where direct volume rendering is
an immediate and natural approach.

The input data from the numerical simulation consists of time de-
pendent smoke densities on unstructured grids of tetrahedra. While
the optical model defines a mapping from smoke concentration data
to opacities, the color of smoke does not effect visibility distances
and can be used for improving appearance. Our focus is not real-
ism, but efficient processing of large time-dependent datasets with
a simple lighting model. A fraction of light traversing smoke is
absorbed and scattered as diffuse color, depending on the particle
concentration. Note that we do not consider indirect lighting, which
would lead to disproportionate complex computations for scientific
visualization. The light model is evaluated in a preprocessing step
for each mesh vertex at every time step.

2 RELATED WORK

Flow volumes [9] provide a smoke generator for flow fields using
direct volume rendering to visualize results of a CFD simulation.
Our flow field is coupled to the placement of the fire, which is also
the source of smoke. Therefore, smoke concentration is computed
during numerical simulation instead of during a post processing
step.

In contrast to previous work on realistic modeling and render-
ing of smoke and clouds [3, 4, 16], the objective of our work is
not realism, but a technical visualization of given smoke concen-
tration data under the constraints of a standardized optical model
commonly used in fire protection engineering [12]. The optical
model gives a fixed translation from smoke concentration data to
opacities. Assuming linearly varying smoke concentration within
each mesh cell, we get a opacity transfer function completely
specified by the optical model, which can be pre-integrated and
stored in a two dimensional lookup table [2]. In contrast, more
general pre-integration methods of piecewise linear color transfer
functions require a three dimensional lookup table, which con-
sume considerable larger amount of memory even at low sampling
rates [10, 13, 19].

One common approach of volume rendering on unstructured
grids is to store the mesh as a texture on the graphics card and run
a fragment program per visible pixel which accumulates the col-
ors along the corresponding viewing ray [20]. However, fragment
program limitations usually require the use of temporary rendering
buffers storing intermediate results and frequent context switching
can slow down performance if not implemented carefully. A more
natural approach for graphics hardware is the algorithm of projected
tetrahedra [17]. The basic idea is to project the tetrahedra onto the
image plane in visibility order and accumulate the final color us-
ing framebuffer blending. In order to interpolate the parameters of
the pre-integration lookup specified at the vertices, the tetrahedron
has to be split into three or four sub-tetrahedrons. This can also
be done in the vertex shader [22], but then the computation is dis-
carded after every frame even for static cameras, which produces
unnecessary overhead for animation of time dependent data. Inter-
polation, pre-integration sampling and framebuffer blending are all
prone to artifacts. Our renderer employs the techniques presented
in [6] to keep artifacts at a minimum level.

3 OPTICAL MODEL USED FOR SMOKE

For evacuating in smoke, the visibility of way guidance markings
and signage is critical. It has been shown [5] that the crucial fac-
tor is viewing distance, much more than power or luminance. The
actual maximum distance for visibility of an object through smoke
depends on properties of the smoke, but also of the object itself and
the lighting conditions. For practical purposes such as architec-
tural specifications, a simpler empirical model is used [12] where
visibility distance is defined as the reciprocal value of the optical
density of the smoke, implying a simple emission-absorption opti-
cal model [8]. The visibility distance is the distance at which the
light is reduced to 10% by absorption and scattering, or at which an
opacity of 90% is attained.

The optical density of smoke can be described [12] by a linear
function of the particle concentration cp:

D =
Km

3
yscp (1)

The optical density D is proportional to the more common ex-
tinction coefficient τ = D ln10. The quantity Km is the light absorp-
tion of soot. Typical values are Km = 7.6 m2

g for flaming burn and

Km = 4.4 m2

g for pyrolysis. The soot yield ys is the mass ratio of soot
particles per total particles, which is material dependent value. The
combined factor (Km/3)ys is called the smoke potential. Example
values are shown in Table 1.

Material flaming burn non-flaming burn
Fibre insulation board 0.6 1.8
Chipboard 0.37 1.9
Hardboard 0.35 1.7
Birch plywood 0.17 1.7
External plywood 0.18 1.5
α-Cellulose 0.22 2.4
Rigid PVC 1.7 1.8
Extruded ABS 3.3 4.2
Rigid PU foam 4.2 1.7
Flexible PU foam 0.96 5.1
Plasterboard 0.042 0.39

Table 1: Smoke potentials for various materials. The unit used here

is dBm2

g . Table reprinted from [1].



The opacity α is the fraction of light lost by absorption and
scattering over a path length L along a viewing ray. Transmit-
tance T = 1 −α is the remaining fraction and can be expressed
as:

T (s) = 10
−

s∫
0

D(t)dt
= e

−
s∫

0
τ(t)dt

(2)

For given constants Km and ys, Eq. 1 defines an opacity trans-
fer function, mapping smoke concentration to optical densities or
extinction coefficients. In principle, the constants are given by the
conditions of the CFD simulation, so the opacity transfer function
is completely determined by our application of visualizing smoke
concentration data. However, in practice, the smoke potential is not
known exactly. Also, CFD simulations [14] are valid for a certain
range of smoke potentials. Therefore, the smoke potential can be
used as a parameter for explorative visualization. The color of the
smoke is evaluated with a simple light model. A fraction of the
light E traversing smoke is scattered as diffuse color C = τE. The
volume rendering integral describes the color of one pixel, which is
the diffuse color accumulated along one viewing ray:

c =
∫

C(s)T (s)ds =
∫

E(s)τ(s)T (s)ds (3)

Assuming linear interpolation within each tetrahedron, the vol-
ume rendering equation can be split into piecewise linear segments.
For one such segment of length L, extinction and light color within
the segment can be written as

E(s) = (1−
s
L

)E0 +
s
L

E1 (4)

τ(s) = (1−
s
L

)τ0 +
s
L

τ1 (5)

where E0 and E1 (τ0 and τ1) are the light colors (extinctions) at the
segment borders. For one segment, Eq. 3 can now be converted to
a weighted sum of the light colors.

c =

L∫

0

E(s)τ(s)T (s)ds = w0E0 +w1E1 (6)

with weights w0,1 depending on the segment length and the extinc-
tions at the segment borders:

w0 = L
1∫

0

((1− s)τ0 + sτ1)e
−L

s∫
0
(1−t)τ0+tτ1dt

(1− s)ds

w1 = L
1∫

0

((1− s)τ0 + sτ1)e
−L

s∫
0
(1−t)τ0+tτ1dt

sds

(7)

Analytical integration of Eq. 7 is not possible because they con-
tain Gaussian integrals. However, they can be pre-computed nu-
merically and stored in a lookup table. Two parameters are suf-
ficient to reference weights for any triple {τ0,τ1,L} (for example
{τ0L,τ1L}).

4 RENDERING APPROACH

For each frame, we first render the opaque walls of the building.
The geometry is lit by a simple approach as described in Sec-
tion 4.3, which reuses the lighting of smoke. Next, the smoke is ren-
dered with the algorithm of projected tetrahedra. For a given view-
point, the tetrahedra are first sorted in visibility order, described in
the next section. Each tetrahedron is then rendered as a set of trian-
gles, as described in Section 4.2. Section 4.3 covers the approach
used to light smoke by a set of spotlights.

4.1 Visibility sorting

For correct blending, the tetrahedra are sorted back-to-front by their
distance to the camera position, which produces less precision arti-
facts than front-to-back ordering, see end of Section 4.2 for details.
Front-to-back rendering allows early ray termination, which locks
pixels once they exceed a certain opacity level and thus avoids com-
putations with neglectible impact on the final image [7]. Back-to-
front rendering only allows culling of cells against opaque walls.
However, smoke configurations that completely occlude a large
fraction of cells are rare in our application.

We are using an adoption of the XMPVO [18] algorithm to sort
tetrahedra according to the distance to the camera position. First,
we build a set of visibility relations between neighboring tetrahedra.
The orientation of the common face of two neighboring tetrahedra
with respect to the camera position determines the visibility rela-
tion. Next, we run a topological sort, which is essentially a breadth
first search. If the mesh contains disconnected components or is
generally non-convex, the weak ordering of face orientation make
a complete sorting impossible. To obtain a complete sorting, ambi-
guities are resolved by comparing the distances between the camera
position and the centers of the tetrahedra. Note that this approach
does not guarantee exact results if visibility cycles are present in
the data. Visibility cycles could be resolved by subdividing tetra-
hedrons, but are ignored in our implementation because we never
noticed any spurious artifacts.

Because only tetrahedra intersecting the view frustum need to be
sorted to achieve a correct rendering, an implementation could use
a visibility acceleration structure (like BSP trees) to determine the
subset of tetrahedra which need to be sorted. However, we chose
to sort all tetrahedra because often only a small fraction lies outside
of the view frustum. Thus, querying an acceleration structure does
not pay off. Moreover, if all tetrahedra are sorted, the user can
rotate and zoom the camera at a fixed position without performing
additional sorting.

The depth of the thick vertex can be chosen arbitrarily. If set to
a convex combination of the corner positions, the depth test can be
used to cull cells that lie behind opaque walls. For each thick vertex,
the extinction τ0,1 and light color E0,1 at the front and back face has
to be computed. The coefficients of the corresponding linear inter-
polation as well as the projection class can be computed from four
determinants defined by the three vectors from the eye point to the
vertices of each face of the tetrahedron. The class depends only on
the signs of these determinants: class 1 has an odd number of pos-
itive signs, while class 2 has an even number. To animate time de-
pendent data, projection class and interpolation weights are reused
as long as the camera position stays fixed. Figure 3 shows the ver-
tex data which is stored in a vertex buffer object on the graphics
card.

Figure 3: Vertex data of the tetrahedral mesh. Thick vertices are
generated by the view dependent splitting of each mesh cell. Each
vertex stores its position, ray segment length, extinction and light
color at the front and back face. For thin vertices, L = 0, τ0 = τ1 and
e0 = E1 holds. The linear array is stored in a vertex buffer object on
the graphics card.



Figure 4: Classification of the projected cell outlines.

4.2 Cell projection

The following section explains the rendering of the sorted tetraedra.
The first stage splits each tetrahedron in three or four sub-tetrahedra
so that the screen space projection can be broken up into triangles
with no triangular region crossing an edge of the tetrahedron. Then,
special perspective interpolation has to be used to concurrently in-
terpolate extinction and light color at the front and back plane of
each sub-tetrahedron during rasterization. A fragment program per-
forms the color and transmittance integration along the viewing ray
segment inside the tetrahedron using a pre-integration approach [2].
Fragment blending incrementally composes the final color for each
pixel, employing the depth sorting of the tetrahedra.

Cell Splitting.
Graphics hardware is optimized for triangle rasterization and sup-
ports correct perspective interpolation of linear functions within tri-
angles. However, the parameters of Eq. 3 have to be interpolated
on four front or back planes. Thus, each tetrahedron is split into
sub-tetrahedra so that each of them projects to a triangle in image
space. The screen space projection of one tetrahedron can be clas-
sified into three cases, depending on the orientation with respect to
the image plane. Figure 4 shows the (non-degenerate) cases that can
occur, resulting in fans of either three or four triangles. The center
vertex is called the thick vertex, the outer vertices the thin vertices.
All parameters of Eq. 7 vary linearly in perspective coordinates of
the triangles and can be interpolated from the vertex values by the
rasterization process.

Perspective Interpolation.
The rasterization process performs perspective linear interpolation
of vertex values in screen space. For any linear function f in object
space, f

w is a linear function in screen space, where w is the homo-
geneous clipping coordinate. Internally, the rasterization process
linearly interpolates f

w and 1
w , from which the function f is recon-

structed for every pixel and passed to the fragment shader. For the
algorithm of projected tetrahedra, perspective interpolation has to
be carried out concurrently for the front and the back face of one
tetrahedron, while the triangle actually drawn lies in the middle be-
tween those two faces. If we denote values of front, middle and
back face with x0, x and x1 respectively, the vertex program com-
putes f = fiw

wi
and f ′ w

wi
. The value of fi can then be reconstructed

in the fragment program by computing f / f ′ = fiw
wi

wi
w . The interpo-

lation scheme is illustrated in Figure 5. Alternatively, we could also

carry out perspective division in the vertex program to obtain w = 1
for all vertices. However, perspective division is not a reversible
operation and thus correct clipping cannot be performed if two ver-
tices of a primitive have differently signed w-coordinates. The ray
segment length is not a linear function but can be computed from
the (linear) positions on the front and back face.

Cell Integration.
A fragment program is responsible for computing the integral of
the diffuse smoke color c and transmittance T along the viewing
ray segment, according to Eq. 2 and 3. For direct volume rendering
applications, the integral is pre-computed for a set of linear density
functions and stored as a 3D texture. The densities at the segment
borders and the segment length are used to lookup the precomputed
color values in the fragment program. Because the transfer func-
tion used in our application is linear, two parameters (τ0L,τ1L) are
sufficient to determine the weights of the light color (see Eq. 7).
We use the inverse of the exponential function to map the param-
eter range [0,∞]2 to the texture coordinate range [0,1]2, producing
denser sampling for small values, where the weighting functions
change more rapidly. In comparison to the approach used in [6],
the exponential mapping does not require a bound parameter range
and thus the lookup table can be computed once for all datasets at
high precision.

First, the fragment program reconstructs the positions and smoke
densities at the front and back plane by inverting the perspective di-
vision carried out in the vertex program. The integration length
is computed from the positions on the front and back plane as
L = ‖p1 − p0‖, and the color weights are read from the lookup
texture. The fragment program also needs to compute the transmit-
tance for the frame buffer blending described in the next paragraph.
The transmittance as defined in Eq. 2 could be computed from the
color weights, because T = 1−w0 +w1 holds. However, it is more
precise to compute the transmittance analytically. We can combine
the computation of texture coordinates and transmittance:

u = e−τ0L/2, v = e−τ1L/2 (8)

T = uv, {w0,w1} = tex(u2,v2) (9)

Figure 5: Perspective interpolation of values on the front and back
face of a tetrahedron. Each tetrahedron (with one view-aligned edge)
is rendered as a triangle (middle line). To achieve correct interpola-
tion of vertex values on the front and back face (left and right line),
perspective correction has to be employed, because linear interpo-
lations on the triangle or the image plane do not match the linear
interpolations on the front and back faces. This is illustrated by the
dashed lines going through the midpoints x.



Figure 6: Synthetic sphere of smoke to illustrate the improved ap-
pearance with our simple lighting model.

Fragment Blending.
The contribution of each cell is accumulated to the final pixel color
using alpha blending. For back-to-front compositing, the frame-
buffer contains the color of all cells behind the one currently being
rendered. The transmittance is the fraction of the color that is ab-
sorbed by this cell. The blending equation in OpenGL terminology
becomes

cdst = csrc +αsrccdst (10)

where the transmittance T is written to the alpha component by
the fragment program. Although not generally needed for back-to-
front compositing, we also store the accumulated transmittance in
the alpha channel of the framebuffer to later adjust the transfer func-
tion in front of exit signs as explained in Section 4.4. The separate
blending function for the alpha channel is

αdst = αsrcαdst (11)

While the fragment program does all computations in 24 or 32bit
floating point precision, the color and alpha output is rounded to
8bit fixed point numbers. Alpha dithering is a sufficient way to
overcome quantization artifacts, as suggested in [21]. The idea is to
round transmittance depending on some random number q:

T = (b255 ·Tc+ f rac(255 ·T ) > q?1 : 0)/255 (12)

The approach described in [6] uses a dependent texture lookup
to retrieve the random number. Instead, we use the lower bits of the
transmittance to compute a pseudo random number.

q = f rac(256 ·255 ·T ) (13)

Because quantization also occurs after alpha blending, artifacts
can only be avoided completely if a high precision framebuffer is
available. The current generation of graphics hardware supports
16bit floating point framebuffers and do not show quantization ar-
tifacts. See Figure 7 for a comparison.

Front-to-back compositing uses a different blending function for
the color channel (cdst = αdstcsrc + cdst ), which produces strong
rounding artifacts at 8bit precision: For αdstcsrc < 0.5/255, the
blending does not change the value of the destination color. For
example, infinite compositing of white smoke cells with 25% opac-
ity leads to a grey value of only 33% instead of 100%.

4.3 Lighting

The lighting of the smoke must be calculated every vertex and time
step of the simulated CFD data. We used a simple lighting model
which considers the absorption of the light by smoke and opaque
surfaces. By restricting the light sources to spotlights, lighting can
be performed by the same cell projection procedure as rendering.
The scene is rendered from the position of each light source, with
a view-frustum bounding the cone of light. The cells are now
rendered in front-to-back order. Note that α-compositing is in-
dependent of the ordering (in contrast to RGB-compositing, see
Eq. 10 and 11), and thus the alpha buffer contains the amount of
light transmitted through all cells already rendered. The transmit-
tance value of the alpha buffer can be multiplied with the standard
spotlight model to gain the light intensity at the vertex. However,
the pixels of the framebuffer are generally not aligned with the ver-
tex positions. To minimize artifacts, we perform bilinear interpo-
lation of the alpha buffer at the projected vertex position. Further-
more, we read back the alpha channel before the cell in front of the
vertex is rendered and compute the last factor of the transmittance
compositing at the exact vertex position on the CPU. Occlusion is
handled by sampling the depth buffer of the opaque walls rendered
beforehand and comparing it with the vertex depth. The accumula-
tion of all light sources in the scene equals to the light intensity that
reaches a mesh vertex.

All lighting calculations are done only once for every time step
in a preprocessing step and the results are saved to disk for later use
during visualization.

Because the computational grid of the smoke propagation is gen-
erally aligned with the building geometry, we can use boundary
faces of the grid to render shadows on walls of the building. First,
all opaque geometry is rendered using standard OpenGL light-
ing. Then, semi-transparent boundary faces are rendered on top
to darken the walls according to absorption from smoke, occlusion
and attenuation of the spotlight model. The depth range is shifted
slightly to avoid depth buffer collision. The result of the lighting is
visualized for a synthetic ball of smoke in Figure 6.

4.4 Rendering of exit signs

An important part of our application is the visibility of exit signs un-
der various smoke conditions. Compared to reflecting signs, self-
emitting signs have a larger visibility distance, which is modeled
by a reduced smoke potential of (Km/8)ys instead of (Km/3)ys,
see [11]. We can exploit the special relationship of the two transfer
functions to draw illuminated exit signs after the smoke has been
rendered. According to Eq. 2, the transmittance of the reduced
smoke potentional is

T ′ = T 3/8 (14)

Figure 7: Precision artifacts for a block of uniform smoke density.
Standard 8bit framebuffer blending (left), 8bit framebuffer with alpha
dithering (middle), 16bit framebuffer (right).



As described in Section 4.2, the transmittance T of the smoke is
rendered to the alpha component of the frame buffer. Illuminated
exit signs can then be rendered in an additional pass using front-to-
back compositing:

c = T ′ce + cs (15)

where cs is the smoke color and ce is the color of the exit sign.
To access the per-pixel value of uncorrected transmittance T in the
fragment program, a bounding box per exit sign is copied from the
frame buffer to a texture. Texture coordinate interpolation needs
special attention when redrawing the exit signs: while the decal
texture of the exit sign uses perspective texture mapping, the α-
map is parallel to the image plane and uses linear texture mapping.
Figure 8 shows the effect of adjusting the transfer function.

5 RESULTS

We had access to two datasets of different size to measure the ren-
dering performance of our algorithm. The smaller dataset consists
of two connected rooms with no ventilation. The seat of fire is
placed in the middle of the smaller room. During the animation, a
dense column of smoke forms above the source, accumulates be-
low the ceiling and eventually fills out the whole room as shown in
Figure 1. The larger dataset (shown in Figure 9 models a shopping
mall with seven stories and ventilation. The simulated source of
fire is placed on the first floor and during the animation, the smoke
quickly spreads in the building. The details of the two datasets are
listed in Table 2 and the frame rates achieved by our approach are
listed in Table 3.

6 DISCUSSION

Simulations of smoke propagation inside buildings has been previ-
ously analyzed using iso-surfaces and contour plot slices, but not
with volume visualization techniques. Visibility plays a major role
for safe evacuation and safe operation of the fire rescue staff during
a fire. With previous methods, only a crude approximation of the
visibility is visualized, corresponding to a local visibility distance
assuming uniform smoke concentration. Our volume rendering ap-
proach allows analysis of accurate visibility for any point of view
described by a standardized optical model.

Dataset vertices cells triangles
Hall 26’392 120’925 12’458
Mall 345’536 1’724’811 219’584

Table 2: Geometric complexity of two test datasets. The first two
columns state the number of vertices and number of tetrahedrons of
the volumetric mesh. The last column states the number of triangles
of the building geometry.

Smoke steady animated steady animated
Camera fixed fixed animated animated
Hall 4.6 / 2.8* 4.6 / 2.7* 2.4 / 1.9* 1.9 / 1.5*
Mall 0.61 0.37 0.42 0.25

Table 3: Frame rates (in s−1) of two datasets at different levels of
interactivity. A camera that is zoomed and rotated is still considered
fixed because tetrahedra sorting and projection does not need to be
performed. Frame rates denoted with * contain a back-illuminated
exit sign, which requires an extra transfer function adjustment path.
The frame rates are averages of the configurations shown in the
screen shots in Figures 1 and 9.

Figure 8: Illuminated exit signs (left column) are visible further than
reflective exit signs (right column), which is achieved by adjustment
of the transfer function.

Realistic simulation of disorientation in a major fire is an impor-
tant aspect of evacuation planning. By adapting common volume
rendering techniques, time dependent smoke data can be lit with
a simple absorption and scattering-based lighting model and ren-
dered in real-time. Adapting the transfer function in front of exit
signs accounts for the increased distance of visibility for illumi-
nated objects.

7 CONCLUSION

We have shown that direct volume rendering can successfully be ap-
plied to the application of technical smoke visualization. Although
photo realism was not the aim of the approach, the visual quality
of our renderer is superior to previously used iso-surface rendering
and allows realistic visualization of the view of a person inside a
building filled with smoke. In comparison to more general volume
rendering approaches, the pre-defined linear mapping from smoke
density to opacity allows pre-integration with a 2D table lookup.
Employing perspective interpolation and 16bit framebuffers, no vis-
ible artifacts are present in the renderings. Our simple light model
can be evaluated using the same rendering approach and signifi-
cantly improves appearance of the smoke. The transfer function in
front of illuminated exit signs can be adjusted in a final rendering
pass of image space complexity.

REFERENCES

[1] Dougal Drysdale. An Introduction into Fire Dynamics. J. Wiley Sons,
Chichester (UK), 1998.

[2] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality
pre-integrated volume rendering using hardware-accelerated pixel
shading. In HWWS ’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages
9–16, New York, NY, USA, 2001. ACM Press.

[3] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation
of smoke. In SIGGRAPH ’01: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, pages 15–22,
2001.

[4] Mark J. Harris and Anselmo Lastra. Real-time cloud rendering. In
Computer Graphics Forum, volume 20, pages 76–84, 2001.

[5] Geir Jensen. Evacuating in Smoke - Decisive Factors. IGP AS, Trond-
heim, Norway, 1994.

[6] Martin Kraus, Wei Qiao, and David S. Ebert. Projecting tetrahedra
without rendering artifacts. In Proceedings of IEEE Volume Visual-
ization Symposium ’04, pages 27–34, 2004.



Figure 9: Four different viewports and time steps of smoke propa-
gating inside a mall with seven stories. The average performance is
stated in Table 3.

[7] Jens Krueger and Ruediger Westermann. Acceleration techniques
for gpu-based volume rendering. In Proceedings IEEE Visualization
2003, 2003.

[8] Nelson Max. Optical models for direct volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics, 1(2):99–108, 1995.

[9] Nelson Max, Barry Becker, and Roger Crawfis. Flow volumes for
interactive vector field visualization. In VIS ’93: Proceedings of the
4th conference on Visualization ’93, pages 19–24, 1993.

[10] Kenneth Moreland. Fast High Accuracy Volume Rendering. PhD the-
sis, University of New Mexico, July 2004.

[11] George W. Mulholland. Smoke production and properties, SFPE
Handbook of Fire Protection Engineering. Society for Fire Protec-
tion Engineering, Boston, 2nd edition, 1995.

[12] D.J. Rasbash and R.P. Phillips. Quantification of smoke produced at
fires, volume 2(3). 1978.

[13] Stefan Roettger, Wolfgang Heidrich, Philipp Slusallek, and Hans-
Peter Seidel. Hardware-accelerated volume and isosurface rendering
based on cell-projection. In Proceedings of IEEE Visualization 2000,
pages 109–116, 2000.

[14] P. Rosemann and A. Moser. Smoke movement in buildings. In Indoor
Air 99, 8th International Conference on Indoor Air Quality Climate,
Edinburgh, Scotland, August 1999.

[15] Jens Schneider and Ruediger Westermann. Compression domain vol-
ume rendering. In Proceedings IEEE Visualization 2003, 2003.

[16] Joshua Schpok, Joseph Simons, David S. Ebert, and Charles Hansen.
A real-time cloud modeling, rendering, and animation system. In SCA
’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, pages 160–166, Aire-la-Ville, Switzer-
land, Switzerland, 2003. Eurographics Association.

[17] Peter Shirley and Allan Tuchman. A polygonal approximation to di-
rect scalar volume rendering. In VolViz ’90: Proceedings of the 1990
workshop on Volume visualization, pages 63–70, 1990.

[18] Cludio T. Silva, Joseph S. B. Mitchell, and Peter L. Williams. An
exact interactive time visibility ordering algorithm for polyhedral cell
complexes. In IEEE Symposium on Volume Visualization, pages 87–
94. IEEE, ACM Siggraph, 1998.

[19] Manfred Weiler, Martin Kraus, and Thomas Ertl. Hardware-based
view-independent cell projection. In VolViz ’02: Proceedings of the
2002 IEEE symposium on Volume visualization and graphics, pages
13–22, 2002.

[20] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas Ertl.
Hardware-based ray casting for tetrahedral meshes. In Proceedings
of IEEE Visualization ’03, pages 333–340, 2003.

[21] Peter L. Williams, Randall J. Frank, and Eric C. LaMar. Alpha dither-
ing. Technical Report UCRL-ID-153185, Lawrence Livermore Na-
tional Laboratory, March 2003.

[22] Brian Wylie, Kenneth Moreland, Lee Ann Fisk, and Patricia Crossno.
Tetrahedral projection using vertex shaders. In VolViz ’02: Proceed-
ings of the 2002 IEEE symposium on Volume visualization and graph-
ics, pages 7–12, 2002.


