
Perspective Accurate Splatting

Matthias Zwicker
Massachusetts Institute

of Technology

Jussi R̈as̈anen
Hybrid Graphics,

Helsinki University
of Technology

Mario Botsch
TU Aachen

Carsten Dachsbacher
Universiẗat

Erlangen-N̈urnberg

Mark Pauly
Stanford

University

Abstract
We present a novel algorithm for accurate, high qual-

ity point rendering, which is based on the formulation of
splatting using homogeneous coordinates. In contrast to
previous methods, this leads to perspective correct splat
shapes, avoiding artifacts such as holes caused by the
affine approximation of the perspective projection. Fur-
ther, our algorithm implements the EWA resampling fil-
ter, hence providing high image quality with anisotropic
texture filtering. We also present an extension of our ren-
dering primitive that facilitates the display of sharp edges
and corners. Finally, we describe an efficient implemen-
tation of the entire point rendering pipeline using vertex
and fragment programs of current GPUs.

Key words: point rendering, conic sections and projective
mappings, texture filtering, graphics hardware

1 Introduction

Because of the growing availability and wide use of 3D
scanning technology [10, 14], point-sampled surface data
has become more important and attracted increasing in-
terest in computer graphics. 3D scanning devices of-
ten produce huge volumes of point data that are difficult
to process, edit, and visualize. Instead of reconstruct-
ing consistent triangle meshes or higher order surface
representations from the acquired data, point-based ap-
proaches work directly with the sampled points without
requiring the computation of connectivity information or
imposing constraints on the sample distribution. Point-
based methods have proven to be efficient for processing,
editing, and rendering such data [17, 20, 23].

Point rendering is particularly interesting for highly
complex models, whose triangle representation requires
millions of tiny primitives. The projected area of those
triangles is often less than a few pixels, resulting in in-
efficient rendering because of the overhead for triangle
setup and making point primitives a promising alterna-
tive. Until recently, limited programmability has ham-
pered the implementation of point-based rendering algo-
rithms on graphics hardware. However, with the current
generation of graphics processors (GPUs), it is now pos-

sible to control a large part of the rasterization process.
In this paper we present a point rendering method that is
completely implemented on the GPU by exploiting such
capabilities. In addition, our technique is derived from a
novel formulation of the splatting process using homoge-
neous coordinates, which facilitates accurate, high qual-
ity point-rendering.

Our approach is based on Gaussian resampling filters
as introduced by Heckbert [7]. Resampling filters com-
bine a reconstruction filter and a low-pass filter into a sin-
gle filter kernel, which leads to rendering algorithms with
high quality antialiasing capabilities. Using anaffine ap-
proximationof a general projective mapping, Heckbert
derived a Gaussian resampling filter, known as theEWA
(elliptical weighted average) filter, which can be com-
puted efficiently. While Heckbert originally developed
resampling filters in the context of texture mapping [4],
the technique has been reformulated and applied to point
rendering recently [24]. Here, a resampling filter inim-
age space, also called asplat, is computed and rasterized
for each point. Using resampling filters for point render-
ing, most sampling artifacts such as holes or aliasing can
be effectively avoided.

The contributions of this paper improve upon previ-
ous point rendering techniques in several ways. First, we
present a novel approach to express the splat shape in im-
age space using homogeneous coordinates. Unlike pre-
vious methods, the splat shape we compute is the exact
perspective projection of an elliptical reconstruction ker-
nel in object space. Hence, the proposed method leads to
more accurate reconstruction of surfaces in image space
and avoids holes even under extreme perspective projec-
tions. Note that although our method computes the per-
spective correct splat shape, the resampling kernel is still
based on an affine approximation of the perspective pro-
jection. Further, we describe a direct implementation
of our algorithm using current programmable graphics
hardware. Instead of rendering each splat as a quad or
a triangle as proposed, e.g., by Ren et al. [22], we use
OpenGL point primitives and fragment programs to ras-
terize the resampling filter. Hence, we avoid the over-
head of sending several vertices to the graphics processor

for each point. Our implementation evaluates the EWA
resampling filter for arbitrary elliptical object space re-
construction filters, while previous approaches only al-
lowed circular kernels and computed approximations of
the resampling filter [1]. Finally, we describe an exten-
sion to elliptical splats by adding a clip line to the splat.
We demonstrate how this method enables the rendering
of objects with sharp features at little additional cost.

2 Related Work

The use of points as a display primitive was first pro-
posed in the seminal work by Levoy and Whitted [11].
In their report, they identified the fundamental issues of
point rendering, such as filtering and surface reconstruc-
tion. Grossman and Dally [5] designed a point-based ren-
dering pipeline that used an efficient image space surface
reconstruction technique. Their approach was improved
by Pfister et al. [21] by adding a hierarchical object rep-
resentation and texture filtering. Focusing on the visu-
alization of large data sets acquired using 3D scanning,
Rusinkiewicz et al. developed the QSplat system [23],
which leveraged graphics hardware for point rendering.

A principled analysis of the sampling issues arising in
point rendering was first provided by Zwicker et al. [24].
This work is based on the concept of resampling filters
introduced by Heckbert [7]. Heckbert showed how to
unify a Gaussian reconstruction and band-limiting step
in a single Gaussian resampling kernel. Point rendering
with Gaussian resampling kernels, also calledEWA splat-
ting, has provided the highest image quality so far, with
antialiasing capabilities similar to anisotropic texture fil-
tering [15]. To reduce the computational complexity of
EWA splatting, an approximation using look-up tables
has been presented by Botsch et al. [2].

Several authors have leveraged the computational
power and programmability of current GPUs [13, 12]
for further increasing the performance of EWA splatting.
Ren et al. proposed to represent the resampling filter for
each point by a quad [22]. However, this has the disad-
vantage that the data sent to the GPU is multiplied by a
factor of four. A more efficient approach based on point
sprites was introduced by Botsch et al. [1]. This method
is restricted to circular reconstruction kernels and uses
an approximation of EWA splatting. Our technique is
similar in that we also use point primitives for rasteriz-
ing splats. However, we implement exact EWA splatting
and handle arbitrary elliptical reconstruction kernels. In
addition, our approach is based on a novel formulation
of splatting using homogeneous coordinates, which re-
sembles the technique described by Olano and Greer [16]
for rasterizing triangles. A GPU implementation of EWA
splatting was also presented by Guennebaud et al. [6].

3 Point Rendering as a Resampling Process

To provide the necessary background for our contribu-
tions described in Section 4, we start by summarizing
the underlying techniques introduced by Heckbert [7] and
Zwicker et al. [24]. We first define the notion of point-
sampled surfaces as nonuniformly sampled signals and
explain how these are rendered by reconstructing a con-
tinuous signal in image space. Then, we briefly review
the concept of resampling filters and show how it is ap-
plied in the context of point rendering.

A point-based surface consists of a set of nonuniformly
distributed samples of a surface, hence we interpret it as
a nonuniformly sampled signal. To continuously recon-
struct this signal, we associate a 2D reconstruction kernel
rk(u) with each sample pointpk. These kernels are de-
fined in a local tangent frame with coordinatesu = (u, v)
at the pointpk, as illustrated on the left in Figure 1. The
tangent frames and the parameters of the reconstruction
kernels can be computed from the point set as described
by Pauly et al. [18].

The surface is rendered by reconstructing it in image
space. For now we focus on the reconstruction of the sur-
face color and denote a color sample atpk byfk. Render-
ing is achieved by projectively mapping the reconstruc-
tion kernels from their local tangent frames to the image
plane and building the weighted sum

g(x) =
∑

k

fkrk(M−1
k (x)) =

∑
k

fkr′k(x), (1)

whereg is the rendered surface,x are 2D image space
coordinates, andMk is the 2D-to-2D projective map-
ping from the local tangent frame of pointpk to image
space. In addition, reconstruction kernels mapped to im-
age space are denoted byr′k(x). This is illustrated in Fig-
ure 1.

Since the reconstructed signalg(x) contains arbitrar-
ily high frequencies, sampling it at the output pixel grid
leads to aliasing artifacts. To avoid such artifacts, Heck-
bert [7] introduced the concept ofresampling filters. In
this approach the reconstruction step is combined with
a prefiltering step, hence band-limiting the signal to the
Nyquist frequency of the pixel grid. We include prefilter-
ing in our rendering procedure by convolving Equation 1
with a low-pass filterh:

g′(x) =
∑

k

fkr′k(x)⊗ h(x)

=
∑

k

fkρk(x), (2)

where theresampling kernelsρk unify the reconstruc-
tion kernels in image space and the prefilter. Note that

because the resampling filters do not form a partition
of unity, Equation 2 is usually normalized by dividing
through the sum of resampling filters (see also Section 6).

To derive a practical resampling filter, Heckbert chose
Gaussians as reconstruction and low-pass filters. A 2D
Gaussian is defined as

gV(x) =
|V−1|1/2

2π
e−

1
2xV−1xT

,

whereV is a2× 2 variance matrixandx is a1× 2 row
vector. We denote Gaussian reconstruction and low-pass
filters by rk = gRk

andh = gH. In particular, Heck-
bert showed that the resampling filter is again a Gaus-
sian if the projective mappingsMk are approximated by
affine mappings. In this case, the reconstruction kernel in
screen spacer′k is a Gaussian

r′k(x) =
1

|R′
k|1/2

gR′
k
(x),

with a new variance matrixR′
k. One of our contributions,

presented in Section 4, is a novel approach to compute
R′

k. The variance matrixH of the low-pass filterd is typ-
ically an identity matrix. The resampling filter is then
given by

ρk(x) =
1

|R′
k|1/2

gR′
k
+H(x). (3)

This has also been called theEWA resampling filter; we
refer the reader to [7, 24] for more details on its deriva-
tion.

y

x

image space xtangent frame u

u
v

pk

reconstruction kernel rk(u)

projective mapping x=Mk(u)

reconstruction kernel in image space r'k(x)

Figure 1: Point-based surfaces are rendered by mapping
the reconstruction kernels from the local tangent frames
to image space.

4 Perspective Accurate Splatting Using Homoge-
neous Coordinates

Similar to previous techniques, our approach is based on
Gaussian resampling filters as in Equation 3. However,

we introduce a new approach to compute the perspec-
tive correct shape of the kernels, where in previous tech-
niques this shape is an affine approximation. Our method
is based on the formulation of the 2D projective map-
pings from local tangent frames to image space using
homogeneous coordinates, as described in Section 4.1.
We then review the definition of conic sections using ho-
mogeneous coordinates in Section 4.2 and show how to
compute projective mappings of conics in Section 4.3. Fi-
nally, we use these results in Section 4.4 to derive Gaus-
sian resampling kernels with perspective accurate shapes.

4.1 Homogeneous Coordinates and Projective Map-
pings

As explained in the previous section, reconstruction ker-
nels are defined on local tangent planes and mapped to
image space by projective mappings during rendering.
With homogeneous coordinates, a general 2D-to-2D pro-
jective mapping from a source to a destination plane may
be written asx = uM?. Here x = (xz, yz, z) and
u = (uw, vw,w) with z, w 6= 0 are homogeneous points
in the source and destination planes, andM? is a3 × 3
mapping matrix. Note that the inverse of a projective
mapping can be formed by inverting the mapping matrix,
and the inverse is again a projective mapping.

To determine the mapping matrix for our application,
let us define atangent planein 3D with coordinates
(x, y, z) by a pointpk and two tangent vectorstu and
tv. The tangent vectors form the basis of a 2D coordi-
nate system on the plane, whose coordinates we denote
by u andv. We can express pointsp = (px, py, pz) on
the plane in matrix form:

p = (u, v, 1)

 tu
tv
pk

 = (u, v, 1) Mk. (4)

Now we specify theimage planein 3D by a point(0, 0, 1)
that lies on the plane and tangent vectors(1, 0, 0) and
(0, 1, 0). Note that we can always transform both planes
such that the image plane has this position. In fact, this
corresponds to the transformation of the scene geometry
from world to camera space. The projection of the point
p from the tangent plane through the origin(0, 0, 0) onto
the image plane is now

(x, y, 1) =
(

px

pz
,
py

pz
, 1

)
.

This is equivalent to regardingMk in Equation 4 as the
mapping matrixM? of a projective mapping andp as a
homogeneous point. Hence, the projective mapping from
the tangent plane to image space is given byx = uMk,
with x and u being homogeneous points in the image

plane and the tangent plane, respectively. Further, the
inverse of the mapping isu = x M−1

k .

4.2 Implicit Conics in Homogeneous Coordinates
Conics are central to our technique since the isocontours
of the Gaussian kernels that we use are ellipses, which
are special cases of general conics. The implicit form of
a general conic is

φ(x, y) = Ax2+2Bxy+Cy2+2Dx+2Ey−F = 0 (5)

Because of its implicit form, all scalar multiples of Equa-
tion 5 are equivalent and we can assume thatA >= 0.
The equation describes an ellipse if the discriminant∆ =
AC − B2 is greater than0, a parabola if∆ = 0 and a
hyperbola if∆ < 0. Using homogeneous coordinates we
can express a general conic in matrix form:

[
x y 1

]  A B D
B C E
D E −F

 x
y
1

 =

xQhxT = 0. (6)

WhenD = E = 0, thecenterof the conic is at the origin.
The resulting form

Ax2 + 2Bxy + Cy2 = F

is called thecentral conic1. A central conic can be ex-
pressed in the matrix form

[
x y

] [
A B
B C

] [
x
y

]
=

xQxT = F,

whereQ is theconic matrix.
A general conic can be transformed into a central conic

by writing the general conic with the center offset toxt =
(xt, yt):

A(x + xt)2 + 2B(x + xt)(y + yt) + C(y + yt)2

+2D(x + xt) + 2E(y + yt)− F = 0.

To determine the offsetxt, we require that the terms in-
volving the first degree ofx andy are 0. By solving the
resulting system of two equations we find

xt = (xt, yt) =
(

(BE − CD)
∆

,
(BD −AE)

∆

)
, (7)

and the resulting central conic is

Ax2 + 2Bxy + Cy2 = F −Dxt − Eyt.

1In some texts the central conic is called thecanonical conic.

Note that for parabolas, for which∆ = 0, the center is at
infinity.

As will be described in Section 6, we rasterize implicit
conics by testing at each pixel in the image plane whether
it is inside or outside the conic. To minimize the number
of pixels that are tested, we compute a tightaxis aligned
bounding boxof the conic. The extremalx valuesxmax

andxmin of the conic (Equation 5) are given by the con-
straint that its partial derivative in they direction ∂φ

∂y van-
ishes, while the extremaly values are taken at the point
where the partial derivative in thex direction ∂φ

∂x van-
ishes. Hence by substituting these constraints

∂φ

∂y
= 2Bx + 2Cy + 2E = 0

∂φ

∂x
= 2Ax + 2By + 2D = 0

into Equation 5, we find the bounds

xmax, xmin = xt ±
√

C(F −Dxt − Eyt)
∆

(8)

ymax, ymin = yt ±
√

A(F −Dxt − Eyt)
∆

. (9)

4.3 Projective Mappings of Conics
As we saw in Section 4.1, we can express a 2D-to-2D
projective mapping in matrix form asx = uM, wherex
andu are homogeneous coordinates. To apply this map-
ping to a conicuQhuT = 0, we substituteu = xM−1.
This yields another conicxQ′

hx
T = 0, where

Q′
h = M−1QhM−1T

=

 a b d
b c e
d e −f

 .

Hence we have derived the widely known fact that conics
areclosedunder projective mappings.

Using Equation 7, we now transform the projectively
mapped conic into a central conic, yielding

(x− xt)Q′′(x− xt)T ≤ f − dxt − eyt (10)

where

Q′′ =
[

a b
b c

]
.

Note that although we applied aprojectivemapping to the
conic from Equation 6, the conic in Equation 10 is ex-
pressed as anaffinemapping of the original conic. How-
ever, only the points on theconic curveare mapped to
the same positions by the two mappings. Otherwise, the
mappings do not correspond. This is due to the fact that
the transformation to the central conic form is based on
the properties of conics, neglecting the properties of pro-
jective mappings.

4.4 Application to Gaussian Filters
We now apply the technique described above to de-
rive Gaussian resampling filters with perspective accurate
splat shapes. To this end, we need to approximate the pro-
jective mappings of the reconstruction kernels from the
tangent planes to image space byaffine mappings(see
Section 3). In previous work [24] the approximation was
chosen such that it is exact at the center of the reconstruc-
tion kernels. In contrast, we choose the affine mapping
such that it matches the projective mapping of aconic
isocontourof the Gaussian kernels.

In practice, Gaussians are truncated to a finite support.
I.e., the reconstruction kernelsgRk

(u) are evaluated only
within conic isocontoursuR−1

k uT < F 2
g , whereFg is

a user specifiedcutoff value(typically in the range1 <
Fg < 2). With homogeneous coordinates, an isocontour
can also be expressed as

[
u v 1

] [
Rk 0
0 −F 2

g

] u
v
1

 =

uQhuT = 0.

Remember that Equation 10 expresses a projective map-
ping of this conic using an affine mapping; hence we use
it as our affine approximation for the projective mapping
x = uMk from local tangent frames to image space.
Note that we need to scale Equation 10 to get the isocon-
tour with the original isovalueF 2

g . The affine approxima-
tion of the reconstruction kernel in image space is thus

r′k(x) =
1

|Q′′′|1/2
gQ′′′−1(x− xt),

whereQ′′′ is obtained by scaling Equation 10 to match
the isovalueF 2

g , i.e.:

Q′′′ =
F 2

g

f − dxt − eyt
Q′′. (11)

Since we choose the isovalueF 2
g to correspond with the

cutoff value of the kernels, theshapeof the truncated ker-
nels is correct under projective mappings. This is illus-
trated in Figure 2, where we compare our novel approx-
imation with the previous approximation used by Heck-
bert [7] and Zwicker et al. [24]. In their techniques, the
affine approximation is correct at the center of the ker-
nel, i.e., the mappings of the kernelcenterscorrespond.
In contrast, our technique is correct for a conicisocon-
tour. As illustrated in the bottom row of Figure 2, the
previous affine approximation can lead to serious arti-
facts for extreme perspective projections. Figure 3 further

x

matching isocontours

matching splat centers
y

image space

Figure 2: Left: Projectively mapped isocontours of a
Gaussian. Middle: Our affine approximation; the out-
ermost isocontour is correct. Right: Heckbert’s affine ap-
proximation; the center is correct. Bottom row:A partic-
ularly bad case for the previous approximation.

illustrates the difference between our novel approxima-
tion and previous techniques. Here we rendered a point-
sampled plane with reconstruction kernels that are trun-
cated such that they exactly touch each other in 3D. Since
our approximation of the perspective projection is exact
at the cutoff value of the kernels, the projected kernels
touch each other also in the image plane. On the other
hand, the previous affine approximation clearly leads to
splat shapes that are not perspective correct.

Figure 3: Perspective projection of a point-sampled
plane. Our approximation (left) leads to perspective cor-
rect splat shapes, in contrast to the previous approxima-
tion (right).

5 Rendering Sharp Features

For many applications, the ability to render surfaces with
sharp features, such as corners or edges, is a require-
ment. From a signal processing point of view, these fea-
tures contain infinite frequencies. Hence, to convert them
into an accurate discrete representation, the sampling rate
should be infinitely high. In other words, we would need
to store a large number of very small reconstruction ker-
nels to capture the unbounded frequencies of the features.
Since this approach is not practical, we instead include
anexplicit representationof sharp features in our surface

description, similar as proposed by Pauly [20]. Sharp fea-
tures can either be extracted from point data using auto-
matic feature detection algorithms [19], or they may be
generated explicitly during the modeling process, for ex-
ample by performing CSG operations [20].

We represent a feature by storing so calledclip lines
defined in the local tangent planes of the reconstruction
kernels. As illustrated in Figure 4, clip lines are computed
by intersecting the tangent planes of adjacent reconstruc-
tion kernels on either side of a feature, hence providing
linear approximations of features. Clip lines divide the
tangent planes into two parts: in one part, the reconstruc-
tion kernel is evaluated as usual, while in the other it is
discarded, or clipped. Since pairs of reconstruction ker-
nels share the same clip line, no holes will appear due
to clipping. Rendering a clipped reconstruction kernel

tu

tv

ch

dh

Figure 4: Clip line defined by points ch and dh on the
intersection of two tangent planes.

for a pointpk is straightforward. A clip line is repre-
sented using two homogeneous pointsch anddh in its
local tangent plane. These points are projected to im-
age space by multiplying them with the projective map-
ping matrix, yieldingc′h = chMk andd′

h = dhMk.
We then perform projective normalization yielding non-
homogeneous pointsc′ andd′, and we compute a direc-
tion vectorv that is perpendicular to the line through
these points. We evaluate the reconstruction kernel at a
pointx in image space if(x− c′) · v > 0, otherwise we
discardx.

To illustrate this technique we applied a color texture
to a point-sampled cube, shown in Figure 5. Note that the
color texture is reconstructed smoothly on the faces of
the cube (Figure 5 left). On the other hand, splat clip-
ping allows the accurate rendering of sharp edges and
corners without blurring or geometric artifacts. We rep-
resent edges by a single clip line per splat, while corners
require two clip lines. In the close-up on the right in Fig-
ure 5, we used a cutoff value ofFg = 0.5 to further em-
phasize the effect of splat clipping.

Figure 5: Rendering with clipped splats.

6 Implementation

We have implemented a point rendering algorithm based
on our novel approximation of the projective mapping us-
ing vertex and fragment programs of modern GPUs. The
algorithm proceeds in three passes very much like pre-
vious methods for hardware accelerated point splatting,
described in more detail in [1, 6, 22]. In the first pass,
we render a depth image of the scene that is slightly off-
set along the viewing rays. In the second pass, splats are
drawn using only depth tests, but no updates, and color
blending enabled. Hence color values are accumulated in
the framebuffer, effectively computing the weighted sum
in Equation 2. Similar as in [1, 6], splats are rendered
using OpenGL points instead of quads or triangles. The
final pass performs normalization of the color values by
dividing through the accumulated filter weights.

However, our technique differs from [1, 6, 22] in the
way splats are computed and rasterized. In the vertex
program we compute the variance matrixR′

k + H of
the resampling filter (Equation 3). Here, we use our
novel approximationQ′′′ (Equation 11) for the vari-
ance matrix of the reconstruction kernelR′

k. Note that
computingQ′′′ requires the inversion of the projective
mappingMk, which hovewer might be numerically ill-
conditioned, e.g., if the splat is about to degenerate into a
line segment. We detect this case by checking the condi-
tion number ofMk, and we discard the splat if it is above
a threshold. This is similar to the approach proposed by
Olano and Greer for triangle rendering [16]. Also note
that Q′′′ represents a general conic (not necessarily an
ellipse) because of the projective mapping that has been
applied. We use the criteria given in Section 4.2 to de-
termine if the conic is an ellipse and discard the splat
otherwise. Finally, the vertex shader also determines the
OpenGL point size by computing a bounding box using
the method described in Section 4.2.

The2×2 conic matrix(Q′′′+H)−1 of the resampling
filter is then passed to the fragment program. The frag-

ment program is executed at every pixelx covered by the
OpenGL point primitive, evaluating the ellipse equation
r2 = x(Q′′′ + H)−1xT . If the pixel is inside the ellipse,
i.e., r2 < F 2

g , r2 is used as an index into a lookup-table
(i.e., a 1D texture) storing the Gaussian filter weights.
Otherwise the fragment is discarded. Note thatx are pixel
coordinates, which are available in the fragment program
through thewpos input parameter [13]. Hence the frag-
ment program does not rely on point sprites. For the nor-
malization pass the result of the second pass is copied to a
texture. Rendering one window-sized rectangle with this
texture sends all pixels through the pipeline again, hence
a fragment program can do the required division by alpha.

We have developed two implementations of our al-
gorithm, an implementation using Cg [13] and a hand-
tuned assembly code version, both providing the same
functionality. Average timings over a number of objects
containing 100k to 650k points for a PC system with a
GeForceFX 5950 GPU and a Pentium IV 3.0 GHz CPU
are reported in Table 1. We measured performance of
single pass rendering (simple z-buffering, without splat
blending and normalization) and the three pass algorithm
described above. The numbers of vertex and fragment
program instructions without splat clipping are summa-
rized in Table 2. Note that the test objects do not contain
any clipped splats, which require a few additional instruc-
tions. However, overall rendering performance is not af-
fected significantly by splat clipping. Typically only few
splats require clipping and we switch between two differ-
ent fragment shaders to rasterize clipped and non-clipped
splats to avoid overhead.

512× 512 1280× 1024
1 pass 3 pass 1 pass 3 pass

Cg 2.9 1.4 2.8 1.2
Assembler 11.2 3.1 10.4 2.8

Table 1: Rendering timings for window resolutions of
512× 512 and 1280× 1024 in million splats per second.

Cg Assembler
VP FP VP FP

Pass 1 151 28 109 9
Pass 2 164 22 120 13
Pass 3 - 4 - 3
Single pass 149 23 108 7

Table 2: Number of vertex (VP) and fragment program
(FP) instructions for Cg and assembler implementations.

7 Results

Our approach implements an EWA filter as proposed by
Heckbert [7], including a Gaussian prefilter. The EWA
filter is an anisotropic texture filter providing high im-
age quality avoiding most aliasing artifacts as illustrated
at the top in Figure 6. In contrast, splatting without the
prefilter leads to Moiŕe patterns, shown at the bottom in
Figure 6. Our new affine approximation to the projec-

Figure 6: Checkerboard texture rendered with perspec-
tive accurate splats: (top) with and (bottom) without pre-
filtering.

tive mapping results in perspective correct splat shapes.
Previous approaches lead to holes in the rendered image
if the model is viewed from a flat angle and additionally
shifted sufficiently from the viewing axis. These artifacts
are effectively avoided by our method, as shown in Fig-
ure 7. Although our method does not map the splat cen-
ters to the perspective correct position (Section 4.4) we
have not observed any visual artifacts due to this approx-
imation. In Figure 8 we illustrate the rendering of objects
with sharp features. This geometry, which has been cre-
ated using CSG operations, consists of only6433 splats.
Because of splat clipping, the sharp edges can still be rep-
resented and displayed quite accurately, as is shown in the
close-up on the right.

8 Conclusions

We have presented a novel approach for accurate, high
quality EWA point splatting, introducing an alternative
approach to approximating the perspective projection of
the Gaussian reconstruction kernels. This approxima-
tion is based on the exact projective mapping of conic
sections, which we derived using homogeneous coordi-

Figure 7: Previous affine approximations lead to holes in
the reconstruction for extreme viewing positions (center).
Our novel approximation avoids these artifacts (right).

Figure 8: Rendering an object with sharp features cre-
ated by CSG operations.

nates. It leads to perspective accurate splat shapes in
image space, hence avoiding artifacts of previous ap-
proaches. Further, we extended the splat primitive by
adding clip lines, which allows us to represent and ren-
der sharp edges and corners. We described a rendering
algorithm for those primitives that can be implemented
entirely on modern GPUs. While the parameters of the
display primitive are computed in the vertex stage, raster-
ization is performed in the fragment programs using point
primitives.

From a more general point of view, we have illustrated
that the programmability of modern GPUs allows the ef-
ficient use of other rendering primitives than triangles,
completely replacing the built-in primitive setup and ras-
terization stages. This approach could be exploited to
render primitives such as polygons with more than three
vertices, or combinations of polygons and conics, etc.
It would also be interesting to include curvature infor-
mation, similar as proposed in [8, 9]. Another direc-
tion for future work is the integration of our approach
with efficient, hierarchical data structures such as sequen-
tial point trees [3], which allow level-of-detail rendering
completely on the GPU.

References
[1] M. Botsch and L. Kobbelt. High-quality point-based rendering on

modern GPUs. InPacific Graphics 2003, pages 335–442, 2003.
[2] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality

rendering of point sampled geometry. InEurographics Workshop
on Rendering, pages 53–64, 2002.

[3] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Sequential
point trees. InSIGGRAPH 2003, pages 657–662, 2003.

[4] N. Greene and P. Heckbert. Creating raster omnimax images from
multiple perspective views using the elliptical weighted average
filter. IEEE CG & A, 6(6):21–27, 1986.

[5] J. P. Grossman and W. J. Dally. Point sample rendering. InRen-
dering Techniques ’98, pages 181–192, July 1998.

[6] Gael Guennebaud and Mathias Paulin. Efficient screen space ap-
proach for hardware accelerated surfel rendering. InVision, Mod-
eling and Visualization, Munich, pages 1–10, November 2003.

[7] P. Heckbert. Fundamentals of texture mapping and image warp-
ing. M.sc. thesis, University of California, Berkeley, June 1989.

[8] Aravind Kalaiah and Amitabh Varshney. Differential point ren-
dering. InRendering Techniques ’01. Springer Verlag, 2001.

[9] Aravind Kalaiah and Amitabh Varshney. Modeling and rendering
points with local geometry.IEEE Transactions on Visualization
and Computer Graphics, 9(1):30–42, January 2003.

[10] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital michelangelo project: 3d scan-
ning of large statues. InSIGGRAPH 2000, pages 131–144, 2000.

[11] M. Levoy and T. Whitted. The use of points as a display primitive.
Technical report, Univ. of North Carolina at Chapel Hill, 1985.

[12] E. Lindholm, M. Kilgard, and H. Moreton. A user-programmable
vertex engine. InSIGGRAPH 2001, pages 149–158, 2001.

[13] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A
system for programming graphics hardware in a C-like language.
In SIGGRAPH 2003, 2003.

[14] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and
L. McMillan. Image-based 3d photography using opacity hulls.
In SIGGRAPH 2002, pages 427–437, 2002.

[15] J. McCormack, R. Perry, K. Farkas, and N. Jouppi. Feline: fast
elliptical lines for anisotropic texture mapping. InSIGGRAPH
1999, pages 243–250, 1999.

[16] Marc Olano and Trey Greer. Triangle scan conversion using 2d
homogeneous coordinates. InSIGGRAPH/Eurographics Work-
shop on Graphics Hardware 1997, pages 89–96, 1997.

[17] M. Pauly and M. Gross. Spectral processing of point-sampled
geometry. InSIGGRAPH 2001, pages 379–386, 2001.

[18] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification of
point-sampled surfaces. InIEEE Vis. 2002, pages 163–170, 2002.

[19] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction
on point-sampled surfaces. InEurographics 2003, pages 281–289.

[20] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape modeling
with point-sampled geometry. InSIGGRAPH 2003, pages 641–
650, 2003.

[21] H. Pfister, M. Zwicker, J. VanBaar, and M. Gross. Surfels: Sur-
face elements as rendering primitives. InSIGGRAPH 2000, pages
335–342, 2000.

[22] L. Ren, H. Pfister, and M. Zwicker. Object space ewa surface
splatting: a hardware accelerated approach to high quality point
rendering. InEurographics 2002, pages 461–470, 2002.

[23] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point
rendering system for large meshes. InSIGGRAPH 2000, pages
343–352, 2000.

[24] M. Zwicker, H. Pfister, J. VanBaar, and M. Gross. Surface splat-
ting. In SIGGRAPH 2001, pages 371–378, 2001.

	Introduction
	Related Work
	Point Rendering as a Resampling Process
	Perspective Accurate Splatting Using Homogeneous Coordinates
	Homogeneous Coordinates and Projective Mappings
	Implicit Conics in Homogeneous Coordinates
	Projective Mappings of Conics
	Application to Gaussian Filters

	Rendering Sharp Features
	Implementation
	Results
	Conclusions

