
Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa and S. Rusinkiewicz (Editors)

Interactive 3D Painting on Point-Sampled Objects

Bart Adams1 Martin Wicke2 Philip Dutré1 Markus Gross2 Mark Pauly3 Matthias Teschner2

1Katholieke Universiteit Leuven† 2ETH Zürich‡ 3Stanford University§

Abstract
We present a novel painting system for 3D objects. In order to overcome parameterization problems of existing
applications, we propose a unified sample-based approach to represent geometry and appearance of the 3D object
as well as the brush surface. The generalization of 2D pixel-based paint models to point samples allows us to
elegantly simulate paint transfer for 3D objects. In contrast to mesh-based painting systems, an efficient dynamic
resampling scheme permits arbitrary levels of painted detail.
Our system provides intuitive user interaction with a six degree-of-freedom (DOF) input device. As opposed to
other 3D painting systems, real brushes are simulated including their dynamics and collision handling.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities, I.3.5
[Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

For many years, digital painting has been of major interest
in computer graphics. Numerous approaches were proposed
to realistically represent brushes and to model their behav-
ior and interaction with canvas. Recently, such models for
painting on 2D canvases have been extended to 3D objects.
Very often, 3D painting systems employ polygonal meshes
or spline patches to represent the underlying 3D geometry.
By establishing some mapping between a 2D parameter do-
main and the 3D surface, appearance attributes, resulting
from paint operations, can be stored separately in texture
maps. Once created, these texture maps can be reprojected
onto the object surface.

This separation of geometry and appearance entails var-
ious inherent drawbacks: the surface parameterization re-
quired to connect the two domains unavoidably leads to dis-
tortions degrading the visual quality of the 3D painting. In
addition, the uniform resolution of the texture map makes it
difficult to handle spatially varying levels of painted detail.
Most often, a brute force global upsampling is applied to
accommodate high resolution strokes. While local parame-
terizations and surface patching offer potential solutions, op-
timal patch layout and texture packing can be cumbersome.
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Furthermore, discontinuities arising at the patch boundaries
are difficult to cope with.

In this paper, we provide a solution to the aforementioned
limitations which is entirely based on point-sampled geome-
try. By representing both the object and the brush surface as
collections of point samples, we remove the separation be-
tween appearance and geometry. All relevant attributes and
parameters, such as paint pigments, color, spatial position,
and normals, are stored along with the sample.

This conceptual generalization of 2D pixel-based paint
models to 3D geometry allows us to elegantly simulate paint
transfer by immediate access of pigment properties stored
in the samples. In addition, our point-based model can be
resampled dynamically and adaptively to store appearance
detail across a wide range of scales. Since the paint trans-
fer is handled locally between brush and surface samples,
texture parameterization and patching become obsolete. Our
approach permits painting onto irregularly sampled object
surfaces without distortions or visual artifacts.

Based on this sampled representation we built a prototype
framework for interactive 3D painting. Our system supports
a variety of paint effects, including paint diffusion, gold,
chrome, and mosaic paint, and renders the objects in high
quality. For intuitive 3D user interaction we added a haptic
feedback model and a six DOF input device.

The remainder of this paper is devoted to the description
of the technical details of the approach. After discussing
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related work, we give an overview in Section 3. Next, we
present our brush model, including dynamics, collision han-
dling, and haptic feedback in Section 4. Paint transfer is de-
scribed in Section 5 and the dynamic resampling is discussed
in Section 6. Section 7 addresses implementation details. Fi-
nally, we demonstrate the performance of our method and
present results in Section 8.

2. Related Work

Point-Sampled Geometry. Points have shown to be very
effective as a display primitive for high quality rendering
of complex objects. Rusinkiewicz and Levoy [RL00] use
a bounding sphere hierarchy for progressive rendering of
large objects. Alexa et al. [ABCO∗01] use a dynamic re-
sampling strategy to obtain high display quality. Zwicker et
al. [ZPvG01] further increase the rendering quality by intro-
ducing the Elliptical Weighted Average (EWA) filter in the
point-based rendering pipeline.

Point-sampled surfaces are also used for modeling and
editing. Pauly et al. [PKKG03] are able to perform large
free-form deformations on point-sampled geometry. Both
Pauly et al. [PKKG03] and Adams and Dutré [AD03]
present algorithms to perform boolean operations on point-
sampled objects. Central in both approaches is a dynamic
resampling strategy.

In the context of appearance modeling, Pointshop 3D
[ZPKG02] extends 2D photo editing functions to 3D point
clouds. Zwicker et al. propose a set of tools to paint, fil-
ter and sculpt point-sampled objects. Painting is performed
by projecting a brush footprint bitmap. Recently, Reuter et
al. [RSPS04] developed a Pointshop 3D plugin to interac-
tively texture an object using a point-sampled multiresolu-
tion surface representation. Photometric attributes are as-
signed to the point samples which result from sampling the
3D object in a preprocess. There is no resampling during in-
teractive texturing and therefore texture detail is limited by
the sampling resolution at the finest level. There is no brush
or paint metaphor.

Virtual Painting. There are several 2D painting systems
of which the work of Baxter et al. [BSLM01] is most re-
lated to this paper. They present a haptic painting system
using deformable 3D brushes to paint on a 2D canvas.
Thanks to the virtual brushes and a bidirectional paint trans-
fer model the artist can achieve an expressive power sim-
ilar to painting on real canvases. They also introduce var-
ious more advanced paint models [BLL03, BWL04]. An
alternative brush and paint model is presented by Xu et
al. [XLTP03]. They simulate clusters of hairs and use a diffu-
sion process to transfer paint from brush to canvas. Several
researchers [WI00, XTLP02, YLO02, CT02] propose other
virtual brush models in the context of Chinese calligraphy.
However, none of these brush models is employed in a 3D
painting system.

Figure 1: The user interface. The brush is controlled via a
PHANToM Desktop haptic device. The object can be rotated
using a SpaceMouse.

Hanrahan and Haeberli [HH90] first suggested a 3D paint-
ing system, using a mouse to position the brush. Agrawala
et al. [ABL95] color the vertices of a scanned object using a
spherical brush volume. There is no remeshing and therefore
the painted detail is limited by the original resolution. More
recent painting systems [JTK∗99, GEL00, KSD03] provide
a haptic interface, but still use a sphere-shaped brush to ap-
ply paint to the object. In all these systems, color and mate-
rial information is stored in fixed-sized textures, limiting the
level of detail that the artist can apply.

To overcome these limitations, Berman et al. [BBS94]
propose the use of images with different resolutions in dif-
ferent places, called multiresolution images, to represent 2D
paintings with regions of varying levels of detail. In 3D, the
Chameleon painting system [IC01] overcomes the limitia-
tions of fixed-sized textures and predefined uv-mappings by
automatically building a texture map and corresponding pa-
rameterization during interactive painting. By using different
patches for different regions they allow for adaptively vary-
ing the painted level of detail. However, even these elabo-
rate techniques cannot fully solve the parameterization prob-
lems inherent in texture mapping. DeBry et al. [DGPR02] as
well as Benson and Davis [BD02] solve the parameterization
problems by storing paint properties in adaptive octrees, thus
only creating texture detail when necessary. Painting is lim-
ited to a 2D plane which is then projected onto the surface.
The resulting color attributes are stored in the octree.

3. System Overview

User Interface. We developed a user interface which en-
ables the artist to manipulate the brush, mix paint, move
the object and apply paint in an intuitive manner (see Fig-
ure 1). In our painting system, the virtual brush is posi-
tioned using a six DOF input device, such as the PHANToM
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Desktop (Sensable Technologies) which also provides hap-
tic feedback to the user. The object can be translated and
rotated using a mouse or a six DOF input device such as
the SpaceMouse (3DConnexion). The artist can choose dif-
ferent paint types, such as aquarelle and oil paint. A virtual
palette is used to mix paint. We vary the reflectivity of the
paint and use environment mapping to enhance realism. The
brush casts shadows on the palette and the object, giving vi-
sual depth cues. An advanced point renderer [ZPvG01] is
used to obtain high quality images of the painted object.

Object Representation and Dynamic Resampling. We
avoid problems, such as texture distortion and patch discon-
tinuities, which are often apparent in polygon-based paint-
ing systems, by using a point-sampled surface representation
and a dynamic sampling strategy. The fundamental idea is to
upsample the object locally if necessary or downsample the
object locally if possible. For example, if the artist paints a
thin line, our system locally upsamples the surface. If later
the artist overpaints this small stroke with a large brush, the
system locally downsamples the affected areas without los-
ing any geometric information.

Our system handles regularly or irregularly sampled ob-
jects, given that the samples adequately capture the object
geometry. Each surface sample carries geometric attributes
such as position x, normal n and radius r, as well as a set
of appearance attributes which represent the paint pigments:
dry paint attributes Ad , wet paint attributes Aw and wet paint
volume per unit area Vw. The point samples are stored in
a kd-tree which is used for efficient collision detection and
neighbor collection during painting.

Virtual Brushes. We model virtual brushes using a point-
sampled surface, wrapped around a mass-spring skeleton.
The skeleton is used to model the dynamics of the brush, the
surface samples store paint information. This flexible brush
model enables us to define different brush types of various
sizes and resolutions. Collision detection between the brush
and complex 3D objects is possible at high rates. Although
more accurate, simulating individual brush hairs or clusters
is too expensive to compute for haptic feedback. Our brush
model gives us all the flexibility we need for a plausible
painting simulation.

When zooming in on the object surface, the brush is scaled
down. As a result, the brush sampling density increases rela-
tive to the object sampling density. This enables the artist to
apply fine detail to the object. Since both the object and the
brush are represented with point samples, an elegant imple-
mentation of bidirectional paint transfer can be realized.

Paint Model. Based on [BSLM01], our system handles dif-
ferent paint types such as aquarelle, oil paint, metallic or oth-
erwise reflective paint as well as other surface types such as
mosaic or beaten gold. In order to model this broad variety of
paint types, the paint model stores color as well as other at-
tributes, such as diffusion coefficients, reflectivity, shininess,

Brush Surface
Deformation Collecting Resampling

Collision
Detection

Brush Skeleton
Deformation

Haptic
Feedback

Surface Samples

A. Brush Dynamics Loop (1 kHz)

B. Paint Transfer Loop (30 Hz)

Paint Transfer,

F

Figure 2: Top row: brush dynamics loop. When a collision
occurs, the brush tip is projected onto the object surface
and the brush skeleton is deformed accordingly. The result-
ing force acting on the handle is sent to the haptic device.
Bottom row: paint transfer loop. The brush point samples
are deformed according to the skeleton deformation. After
collecting the relevant surface samples paint is transfered
between the brush and the surface samples.

and procedural small-scale geometry manipulations. The lat-
ter are used to simulate the geometric detail often found in
oil or acrylic paint, or planar patches typically found in mo-
saics. We chose the paint model from [BSLM01] as a basis
for ours as it allows for bidirectional paint transfer while be-
ing computationally cheap. Any other paint transfer model
that is defined on pixels can be used as well.

Decoupled Haptics. To guarantee the required 1 kHz up-
date frequency of the haptic device we decouple the force
computation from the rest of the application. Only opera-
tions that are necessary to simulate the dynamic behavior of
the brush, such as collision detection and skeleton deforma-
tion, are performed in the brush dynamics loop (Figure 2, A).
All other (more costly) operations, such as brush surface de-
formation, paint transfer and dynamic resampling, are per-
formed in the paint transfer loop (Figure 2, B) which runs at
the 30 Hz display frequency.

4. Brush Model and Haptic Display

To model a virtual brush, we have to devise a geometric rep-
resentation for the brush surface as well as a physics-based
model to simulate the dynamic behavior. We use point sam-
ples storing paint information to represent the surface of the
brush. These samples are defined relative to a mass-spring
skeleton which is used to simulate the dynamic behavior.
The force resulting from the dynamics is directly used for
haptic feedback.
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Round Brush Flat Brush

Figure 3: The brush is represented as a point-sampled sur-
face wrapped around a mass-spring skeleton. Left: round
brush consisting of one basic skeleton. Right: flat brush
modeled using two tips.

4.1. Brush Dynamics

Mass-Spring Skeleton. To simulate the dynamic behav-
ior of a brush, we use a mass-spring skeleton similar to
[BSLM01]. The basic skeleton block is a tip skeleton con-
sisting of a single mass (the tip) and eight springs attached
to handle points. We model round brushes using one tip.
Flat brushes have skeletons consisting of several tips (see
Figure 3). More exotic brushes can be modeled using an
arbitrary mass-spring skeleton. To simulate viscosity, the
brush simulation is heavily damped. Leap-Frog integration
[Hoc70] is used to solve the differential equations governing
the brush behavior. Even with larger skeletons, this method
is fast enough to run in the brush dynamics loop. With an
update frequency of 1 kHz, the simulation proved robust for
all user manipulations.

Collision Handling. The brush skeleton should never pen-
etrate the object. Therefore, we perform a collision detec-
tion query for each skeleton mass point. In order to imple-
ment a variant of force shading as proposed by [RKK97], we
compute smoothed surface normals and penetration depths
during collision detection. Given the position x of the mass
point, we search for the N (typically N = 10) closest ob-
ject samples with positions xi and normals ni and compute a
weighted average penetration depth d and local surface nor-
mal n as follows:

d =
N

∑
i=1

wi ·ni · (xi−x), (1)

n =
N

∑
i=1

wi ·ni, (2)

wi =
dmax−di

∑N
j=1 dmax−d j

, (3)

where di = ‖xi − x‖ and dmax = maxdi. This weighting
scheme provides a smooth interpolation of normals over the
surface. When a collision is detected, i.e. d > 0, the mass
point is constrained to the surface of the object:

x ← x+d ·n/‖n‖. (4)

h1

h0

d2

x2R1
R2

d1

x

x′

x1

Figure 4: Left: undeformed brush. Middle and right: when
the brush is deformed, the new positions x′ of the brush sam-
ples are computed from the original positions and the rota-
tion of the springs.

Depending on its tangential speed, we also apply static or
dynamic friction.

Haptic Display. The resulting force F acting on the han-
dle can be computed by adding up the forces exerted by all
springs in the brush skeleton that are attached to the han-
dle. The torque resulting from the simulation can be used
for haptic feedback, if supported. When the user zooms in on
some part of the object, the transformations returned by the
haptic device are scaled down to allow for controlled move-
ments even in a very small field of view. The forces sent to
the haptic device are scaled up proportionately in order to
maintain the illusion of a hard surface.

Thin sheets are a problem for the haptic rendering algo-
rithm, since the springs cannot generate sufficient force to
keep the user from pushing the brush through a thin part
of the object. This problem disappears when zooming in,
mainly due to the scaling of the haptic device movement.

4.2. Brush Surface Representation

The samples representing the surface of the brush carry at-
tributes similar to the object samples, namely position x,
orientation n, radius r, paint volume per unit area Vb and
paint attributes Ab. The undeformed brush surface is manu-
ally modeled to resemble a real brush.

To deform the brush surface, we apply a combination
of linear blend skinning [LCF00] and the free-form defor-
mation method for point-sampled geometry presented in
[PKKG03] (see Figure 4). Given the position x of the point
sample on the undeformed brush, we compute the distances
di from the point x to the N = 4 closest handle points. When
the brush is deformed, the spring attached to each of those
handle points defines a rotation Ri. Applying the rotations
Ri to the point x yields new point positions Ri(x). The final
position x′ of the deformed sample is obtained as a convex
combination of the original position x and the rotated posi-
tions Ri(x):

x′ = (1−α) ·x+α ·
N

∑
i=1

wi ·Ri(x), (5)
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Figure 5: Left: if two or more skeletons are constrained to
differently oriented surface parts, the brush splits. Right:
brush splitting on the back of the Stanford Dragon.

α = h0/(h0 +h1), (6)

wi =
1

N−1
· (1−

di

∑N
j=1 d j

), (7)

where h0 and h1 denote the distance of the brush sample
to the handle and the tip respectively. Thus, a brush sam-
ple close to the skeleton tip will deform more than a sample
close to the handle. We apply the same transformation to
compute the deformed normal n′ of the brush sample.

4.3. Brush Splitting

When a brush with several tips moves over a highly curved
surface, two tips may be constrained to differently oriented
surfaces (see Figure 5). We detect this by comparing the lo-
cal surface normals computed for each of the tips. If the lo-
cal surface orientation differs significantly, i.e. when the an-
gle between the two normals is more than 60 degrees, the
brush is split and interior brush samples are activated to rep-
resent the two brush head volumes. This way we can paint
on highly curved surfaces such as the back of the Stanford
Dragon (see Figure 5). As will be explained in the next sec-
tion, we compute paint transfer separately for each of the
brush parts.

5. Paint Transfer

When a collision between the brush and the object surface
is detected, paint is transferred from the brush to the surface
and vice versa. Inspired by the orthogonal projection map-
ping presented in [ZPKG02] we construct a local planar ap-
proximation of the object surface, the paint buffer. We splat
both the object samples and the brush samples into the paint
buffer, which serves as a common projection plane. Repro-
jecting the paint buffer results in new object samples storing
the painted detail. The different steps performed during a
paint event are explained below (see Figure 6).

A. Collecting Surface Samples. In a first step, we collect
all object samples that might be affected by the brush. As
the points are stored in a kd-tree, this can be efficiently im-
plemented by performing a range query corresponding to the

bounding sphere of the brush samples (see Figure 6, A). The
bounding sphere is computed from the current positions of
the brush samples using the smallest enclosing ball algo-
rithm presented in [Gar99].

B. Paint Buffer Construction. After collecting the relevant
samples, we construct the paint buffer in a plane defined by
the average normal of the collected surface samples (see Fig-
ure 6, B). The position of the plane is arbitrary. Its dimen-
sions are chosen so that the bounding sphere of the brush
head projects completely inside the buffer. If the sampling
density of the brush is higher than the sampling density of
the surface, one brush sample should project to approxi-
mately one pixel in the paint buffer. The paint buffer reso-
lution is chosen accordingly. Typical paint buffer resolutions
range from 30 by 30 to 50 by 50 pixels. If however the local
sampling density of the object is higher than the brush sam-
pling density, the paint buffer pixel size is adjusted to the
object sample size. This guarantees that texture detail and
geometric features are preserved during painting.

Note that the paint buffer plane is usually a good approxi-
mation to the area of the surface that is touched by the brush.
If the curvature of this region is very high, the brush is very
likely to split. In this case we use multiple paint buffers, one
for each skeleton tip. The same holds when the brush enters
a crease as the surface normals computed for the tips will
differ significantly. This way, we minimize distortion when
painting on highly curved surfaces.

C. Surface Sample Projection. We use a software imple-
mentation of the EWA splatting algorithm to rasterize the
front-facing samples into the paint buffer (see Figure 6, C).
By using the EWA splatting algorithm we avoid aliasing ar-
tifacts in all attributes. Note that the orthogonal projection
simplifies the splatting algorithm. The following point at-
tributes are written to the paint buffer:

• depth d (distance to the projection plane),

• normal n,

• paint attributes Aw and Ad ,

• wet paint volume per unit area Vw.

D. Brush Sample Projection. Similar to the object samples,
the back-facing brush samples are projected into the paint
buffer (see Figure 6, D). Only fragments with a depth greater
than the depth already stored in the paint buffer are writ-
ten. These fragments represent parts of the brush that pene-
trate the surface of the object. The following brush sample
attributes are written to the paint buffer:

• penetration depth dp,

• paint attributes Ab,

• paint volume per unit area Vb.

Here the penetration depth dp denotes the signed distance
between the surface of the brush and the surface of the object
at the relevant pixel.
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B. Paint Buffer Construction C. Surface Sample ProjectionA. Collecting Surface Samples D. Brush Sample Projection E. Reprojection

Figure 6: Different steps performed during a paint event. A. Collecting the surface samples. B. Constructing the paint buffer
orthogonal to the average surface normal. C. EWA splatting of the collected surface samples. D. EWA splatting of the back-
facing brush samples. E. Reprojection of pixels in the paint buffer to surface samples.

E. Reprojection. We compute bidirectional paint transfer
using the transfer model proposed in [BSLM01] to deter-
mine the resulting color in the paint buffer. After computing
paint transfer, we reproject the newly painted pixels onto the
object surface (see Figure 6, E). If the brush sampling rate is
higher than the local object sampling rate, the object surface
is locally upsampled using our dynamic upsampling oper-
ator which is described in detail in Section 6. In order to
add geometric effects to the paint type, the normal and posi-
tion values of the new samples can be modified by the paint
model.

6. Dynamic Sampling

To preserve the detail that is potentially created with a high
resolution brush on a less densely sampled object, the ob-
ject surface has to be upsampled in order to accomodate the
texture detail. Conversely, if there is no texture detail to jus-
tify the high sampling density, the object surface needs to be
downsampled to remove redundant information. These dy-
namic resampling operators are based on the assumption that
the surface of the original object is adequately sampled.

Up- and downsampling is facilitated by a two-level data
structure (see Figure 7). The original object samples are
stored in a static kd-tree. They may never be deleted in order
to retain the original geometric information. However, dur-
ing resampling, they can be marked as dead, meaning they
will not be rendered. These samples can have children, i.e.
new samples replacing or complementing the parent. Chil-
dren are uniquely assigned to one parent, which is in general
the closest sample in the kd-tree. Children are stored in a
list belonging to the parent, and are instantly deleted when
marked as dead. This way we avoid updating the kd-tree,
which is too costly during interactive painting.

Upsampling. The upsampling operator needs to be invoked
whenever a brush paints a less densely sampled object. It lo-
cally upsamples the area in which more texture detail needs
to be stored (see Figure 8, B). In order to find the affected
area, the paint buffer storing the paint information is ana-
lyzed.

Since the brush can have a very uneven color distribu-
tion, the complete brush footprint, i.e. the area where the

Static kd−tree

Dynamic lists

parent samples

child samples

Figure 7: Two-level data structure. Top: the original sur-
face samples are stored in a static kd-tree. Bottom: when
new samples are added, they are stored in a list belonging to
the closest object sample in the kd-tree.

brush touches the surface, needs to be resampled. In the paint
buffer, this area consists of all pixels that have a penetration
depth dp > 0. Each of these pixels is reprojected onto the
object and becomes a child of the closest sample in the kd-
tree. The position of the new sample can be computed using
the paint buffer plane position and orientation as well as the
pixel’s depth value. Its normal and the paint attributes can be
directly read from the paint buffer. The new sample’s radius
equals the diagonal of one paint buffer pixel. All object sam-
ples fully or partly covered by these new samples are marked
as dead. If some of the killed samples were only partly cov-
ered by the reprojected pixels, we additionally reproject pix-
els that are only touched by the projection of killed samples
(see Figure 9).

Note that child samples never become the parent of new
samples: they are instantly deleted and the new sample is
added to the list of the closest sample in the kd-tree. This
way our system can handle multiple overpaints without the
need to reorganize a hierarchical data structure.

Downsampling. Reprojection of the paint buffer may re-
sult in neighboring samples having the same appearance at-
tributes. This usually happens when overpainting fine de-
tail with a large brush. To remove this unnecessary detail,
we apply the following simple downsampling operator. For
each parent sample, we compute the deviation of paint at-
tributes of its child samples. When this deviation is below a
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B. Upsampling C. DownsamplingA. Before Painting

Figure 8: The sampling density is locally adapted to ac-
curately represent the texture detail. Left: sampling density
of the Stanford Bunny. Middle: upsampling to represent the
painted detail. Right: downsampling of child samples.

will be reprojected

will not be reprojecteddead sample non−dead sample

brush footprint

Figure 9: Analyzing the paint buffer. The footprint of the
brush is shaded blue. Left: samples projected onto a pixel
that is touched by the brush are marked as dead. Right: pix-
els affected by the brush (blue pixels) will result in new sam-
ples. Additionally, in order to avoid holes, we reproject pix-
els touched by a dead sample and not touched by any non-
dead sample (red pixels).

threshold, we remove the child samples, resurrect the parent
if necessary and set the parent’s attributes to the average of
all its children’s attributes. Reasonable values of the devia-
tion threshold are between 0.95 and 0.99, depending on the
amount of smoothing the downsampling operator is allowed
to perform. To ensure that no geometric detail is lost, we re-
move only child samples. Thus, we maintain an adequately
sampled surface at all times. An example of downsampling
is illustrated in Figure 8, C.

7. Implementation

Rendering. High quality renderings of the painted objects
are generated with a software implementation of the EWA
splatting algorithm [ZPvG01]. Each paint event only affects
a local part of the surface. Thus, we can achieve high frame
rates by only locally updating the rendered image, unsplat-
ting samples that have been killed and splatting newly added
or resurrected samples.

When rotating or translating the object, the system
switches to a hardware implementation of the EWA splat-
ting algorithm similar to [BK03] for performance reasons.

We use the software renderer during painting because the
hardware implementation suffers from quantization artifacts
ocurring when locally updating the rendered image.

The brush casts a shadow on the object and the palette.
Shadow mapping can be integrated into the hardware ren-
derer without requiring an additional rendering pass. To ren-
der shadows using the software renderer, we save the ren-
dered image to a texture and add the shadow using an addi-
tional hardware rendering pass performing the shadow test
in a fragment program. Environment mapping enhances re-
alism for reflective paint types.

Paint Effects. In order to give the artists a variety of paint
types, we modeled various paint effects. We do not limit
the paint attributes to color information. Reflectivity makes
chrome or gold paint possible and shininess can be used to
model matt paint or glossy polished surfaces.

The paint transfer model is allowed to modify the small-
scale geometry of painted surfaces. A mosaic-like effect is
achieved by setting the normal of newly created child sam-
ples to their parent’s normal instead of blending it. When
using gold paint combined with the mosaic effect, we obtain
the appearance of beaten gold.

When painting with highly viscous paint, such as oil or
acryl, the brush hairs leave an imprint in the paint. Although
we are not able to model the complete geometric effect of
adding layers of paint, we can model the surface structure.
If the brush skeleton is aligned with the brush velocity, we
slightly manipulate the surface normals of the new samples
as to create the illusion of a hair imprint.

Diffusion is the most important feature of aquarelle.
Our paint model stores diffusion coefficients and supports
isotropic surface diffusion. Each surface sample xi ex-
changes wet paint volume ∆Vw with other surface samples
x j:

∆Vw = (V i
w−V j

w) · e−
d2

v̄2
·T , (8)

where d = ‖xi−x j‖ is an approximation of the geodesic dis-
tance between the two sample points, v̄2 denotes the average
squared particle speed and T is the elapsed time period. The
wet paint attributes Aw are adjusted using the paint transfer
rules. Because of the exponential decay of ∆Vw, we can re-
strict the number of samples x j by only considering neighbor
samples within a threshold distance to xi.

8. Results

Inspired by the Art on Cows project, we set up our own vir-
tual Art on Bunnies project and asked a number of artists
to paint the Stanford Bunny using our painting system. The
artists all used the same irregularly sampled bunny model
consisting of 97k point samples. We provided them with a
set of 12 round and flat brushes. The painting system runs
on a 3 GHz PC with a GForce FX 5900 graphics board.
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A selection of the resulting bunnies is displayed in Fig-
ures 10, 11, 12 and 13 and in the accompanying video. Fig-
ure 10 shows the sampling density of the painted Day-and-
Night Bunny. The sampling density is increased locally to
preserve sharp painted edges. The dynamic resampling strat-
egy also allows for fine painted detail such as the flowers
and the bee in Figure 12. The entire bee covers an area about
the size of a single point sample of the original model. Re-
flective paint was used for the Caesar Bunny (Figure 11).
You can see diffusion effects on the Savannah Bunny (Fig-
ure 11). Note the imprints left by the virtual brush hairs in
the painted water on the Beach Bunny (see Figure 13 and
the video). Depending on the amount of detail, the resulting
bunnies consist of 300k to 800k point samples.

One of the artists painted the Stanford Dragon (Figure 14).
Environment mapping is used for the reflecting dragon ball.
The eyes of the dragon are laid in mosaic.

9. Conclusion and Future Work

We presented a novel painting system for 3D objects. Our
system provides virtual brushes, various paint types, and an
intuitive user interface. In order to overcome parameteriza-
tion problems of existing painting applications we employ
a unified sample-based approach to represent geometry and
appearance of the 3D object surface as well as the brush sur-
face. Our paint transfer model locally approximates the ob-
ject surface with one or more planes, also handling highly
curved surfaces without distortions. Dynamic resampling of
the point-sampled object surface allows the artist to apply
arbitrarily fine painted detail.

In our current implementation, collision handling of the
brush is performed with respect to the original object geom-
etry. However, user feedback suggests that the actual thick-
ness of applied paint should be considered in order to be felt
by the user. Therefore, we intend to integrate a height field to
represent paint thickness. This height field would also sup-
port the incorporation of more advanced paint transfer mod-
els [BLL03]. User feedback has also shown that more intu-
itive depth cues should be provided. Although our system
gives depth information such as the brush shadow, it might
be useful to add stereo vision.
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Figure 11: Several bunnies painted using our painting system. From left to right and top to bottom: Cloud Bunny, Nemo Bunny,
Caesar Bunny, Mondriaan Bunny, Savannah Bunny and Flower-Power Bunny.

Figure 12: Close-ups of the Day-and-Night Bunny. Note the very fine detail. Right: sampling density around the bee.

Figure 13: The Beach Bunny. Right: geometric detail on
the water.

Figure 14: Left: the Fire Dragon. Top right: close-up of
the reflecting dragon ball. Bottom right: close-up of one
of the eyes painted with the mosaic effect.
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