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Abstract

Distributed multimedia applications typically handle two different types of communication: request/reply interaction

for control information as well as real-time streaming data. The CORBA Audio/Video Streaming Service provides a

promising framework for the efficient development of such applications. In this paper, we discuss the CORBA-based

design and implementation of Campus TV, a distributed television studio architecture. We analyze the performance of

our test application with respect to different configurations. We especially investigate interaction delays, i.e., the

latencies that occur between issuing a CORBA request and receiving the first video frame corresponding to the new

mode. Our analysis confirms that the interaction delay can be reasonably bounded for UDP and RTP. In order to

provide results which are independent from coding schemes, we do not take into account any media specific

compression issues. Hence, our results help to make essential design decisions while developing interactive multimedia

applications in general, involving e.g., distributed synthetic image data, or augmented and virtual reality.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Distributed component architectures leverage the

development of networked applications since they

provide a powerful programming model for remote

method invocation. However, distributed multimedia

applications require additional features which allow for

the efficient transmission of real-time streaming data.

During the last years, CORBA has been used in many

research and industrial projects and has become one of

the foremost standards in distributed computing [1].

Stable implementations are widely available, both as

open-source and commercial software. However, COR-

BA was not suitable for time- and performance-critical

applications, until the Real-Time CORBA specification

was released [2].
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This paper analyzes the TAO/ACE framework [3] and

its CORBA Audio/Video Streaming Service implementa-

tion in the context of dynamically changing real-time

transmissions [4]. We built an A/V streaming application

as a test bed for the TAO/ACE toolkit and we

benchmarked TAO’s CORBA implementation using

our test application. The major contribution of this

work consists in the measurement of the latencies that

occur between the invocation of a CORBA request and

the reception of the first corresponding video frame. Our

quantitative results confirm that these latencies are

bounded when the streaming data is transmitted by

unreliable transport protocols, such as UDP and RTP.

The absolute value of the latency depends on the average

network load. Furthermore, we assess the scalability of

our test application with respect to the number of

simultaneous video streams. Unlike existing applica-

tions, the Campus TV test bed handles a large number of

high-quality videostreams with little processing over-

head due to coding. Hence, it allows for the efficient

testing of the raw network and data transmission aspects

of the CORBA A/V Streaming Service. Thus, our
d.
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Fig. 1. Campus TV, a distributed TV studio architecture.
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analysis is valid not only for video, but for all type of

streamed real-time data, including computer generated

image data.

Our study of CORBA’s suitability for distributed and

interactive multimedia streaming is part of the blue-c

project, whose aim is the development of a novel

platform for highly immersive collaborative virtual

environments [5] (http://blue-c.ethz.ch). It comprises,

among other things, real-time acquisition of several video

images of a human user and reconstruction of a 3-D

graphical representation. This geometry-enhanced video

will be transmitted via a high-speed network to several

blue-c portals, where it will be seamlessly integrated into

a distributed virtual environment. The blue-c system will

eventually lead to a distributed virtual reality platform on

which collaboration is possible using the most natural

ways of interhuman communication and interaction,

enhanced through the feeling of total immersion. Several

research groups at ETH Zurich currently develop the

various blue-c hard- and software components.

The blue-c environment will be a heterogeneous

system on different platforms, including SGI Irix, Linux

and Microsoft Windows. The increasing complexity of

this system demands a middleware with an advanced

programming model for distributed computing, sup-

porting portability and real-time features. The chosen

middleware needs to provide an efficient way of

transmitting both control information, allowing for

dynamic configuration of the system’s setup and the

exchange of less time-critical information, as well as

latency-critical real-time streams with bandwidth re-

quirements up to several megabits per second. From this

point of view, the blue-c platform is not much different

from other distributed applications which share high-

quality multimedia streams.

From a practical point-of-view, Campus TV, our test

bed, implements a distributed television studio which is

depicted in Fig. 1. The following components are

connected in a local area network:

* A variable number of camera stations that acquire

audio and video signals and continuously transmit

them to a control desk.
* A control desk, providing a graphical user interface

which allows an operator to preview and configure all

available streams.
* A theoretically unlimited number of receivers that

listen to the multicast address of the TV program.

The remainder of this paper is organized as follows.

After reviewing CORBA and its use in multimedia

applications in Section 2 and related work in Section 3,

we describe the overall architecture of our application in

Section 4. Section 5 discusses some implementation

details of the different components and Section 6

presents our performance analysis.
2. CORBA and multimedia

A lot of effort has recently been put into the

development of general-purpose communication mid-

dleware. A middleware is an intermediate software layer

between low-level application programming interfaces

and application code. The use of middleware toolkits

leads generally to a better structured software architec-

ture and allows for easier portability from one platform

to another. However, not every middleware standard is

appropriate for building distributed multimedia applica-

tions. The special requirements of this type of applica-

tions can be summarized as follows:

* Handling of continuous media streams.
* Support for multi-party communication.
* Quality of Service management.
* Real-time synchronization.

Classical environments for distributed computing

often do not fulfill the requirements of distributed

http://blue-c.ethz.ch
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multimedia applications [6]. Their initial focus lies in

remote request/reply object interactions and their

capabilities in continuous media modeling are limited

[7]. Also the Common Object Request Broker Architec-

ture (CORBA), supported by the Object Management

Group (OMG) [1], does not naturally support the

transmission of real-time streaming data. The CORBA

layer introduces a large overhead through its marshal-

ling operations and through the retransmission of lost

packets [3,8].

CORBA’s Audio/Video Streaming Service, specified

in [4], uses a promising concept for the transmission

of time-critical streaming data. It makes a distinction

between control information (i.e., connection setup,

device configuration) and the real-time payload

data. The control information can perfectly be handled

by CORBA’s client-server programming model, but

the real-time data is directly streamed using classical

transport protocols. On one hand, this design

profits from advantages of the CORBA programming

environment, on the other hand, it produces no

overhead for the time-critical data. In order to guarantee

interoperability between different A/V streaming

applications, the service defines common interfaces

for control and management of streams. Moreover,

each stream can have an associated media controller,

which implements application specific functionality.

The A/V Streaming Service specification does not

prescribe interface details of media controllers, such

that they can be flexibly designed by the application

developers.

A schematic description of the A/V Service is depicted

in Fig. 2. A stream contains one or many data flows and

connects as many data sources with their corresponding
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Fig. 2. Data transmission using CORBA’s audio/video streaming service.
data sinks. An endpoint, represented by the Strea-

mEndPoint interface, comprises:

* A flow endpoint, which is either a data source or a

data sink, represented by the FlowEndPoint inter-

face.
* A stream interface control object, represented by the

StreamCtrl interface, providing an IDL defined

interface for controlling and managing the stream.
* A stream adapter, that receives or transmits data

frames over a network.
3. Related work

The Center for Distributed Object Computing at

Washington University, St. Louis, provides with the

TAO/ACE framework an advanced CORBA implemen-

tation that includes real-time features and additional

services of CORBA 2.x, including the A/V Streaming

Service [8]. ACE, the Adaptive Communication Environ-

ment, is an open-source object-oriented C++ frame-

work that implements many core design patterns for

concurrent communication software [9]. Furthermore, it

provides an operating system abstraction layer and

therefore improves the portability of applications that

are built upon ACE. The ACE ORB (TAO) implements

the standard CORBA reference model with most of the

enhancements for real-time applications. Further infor-

mation about TAO/ACE, as well as the sources of the

current version can be downloaded at http://

www.cs.wustl.edu/~schmidt/TAO.html. An MPEG vi-

deo server is included as an A/V Streaming Service

example application in the TAO/ACE distribution. It is

http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
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based on the Distributed A/V MPEG Player from the

Oregon Graduate Institute [10]. The MBone video-

conferencing application vic [11] was also ported to

TAO’s A/V Streaming Service [8]. Recent work includes

a video distribution application, combining the A/V

Streaming Service with the Quality Objects framework

[12]. None of these applications allows a simple

adaptation for a performance analysis similar to the

tests we present in Section 6.

In the field of collaborative virtual reality and

distributed simulation, design suggestions for CORBA-

based frameworks have been made [13–15] and on-going

projects exist [16,17], but no complete frame-work has

been implemented until today.

ISO published through the Reference Model for

Open Distributed Processing (RM-ODP) a meta-stan-

dard for distributed processing [6,18]. CORBA, as

well as other concrete standards, like PREMO

(PResentation Environments for Multimedia Objects)

[19], implement the concepts of RM-ODP up to various

extents. Further attempts to integrate CORBA with

multimedia processing and transmission can be found in

[20,21]. At the time of those research projects, the

CORBA A/V Streaming Service was not yet fully

specified.

The Real-time Transport Protocol (RTP) is an

appropriate transport protocol for multimedia data

delivery [22], it will be taken into account in Section 6

of this paper.

McCanne et al., propose a common infrastructure for

multimedia networking middleware, the MASH project

[23]. Their research effort generated a large number of

applications, among which a video conferencing appli-

cation that can be remotely controlled [24], and a

control system for live webcasts [25]. The webcast

application, which has a more developed functionality

than Campus TV, currently still requires special hard-

ware for video switching and is implemented using ad

hoc remote method invocation.
4. System description

This section gives an overview of the Campus TV test

application we built for the evaluation of the CORBA

A/V Streaming Service. The supported data classes are

described, together with some important design deci-

sions.

4.1. Overview

In our application, several camera stations grab live

video images, potentially at a low resolution and at a

low frame-rate. This information is continuously

streamed to the control desk. A user can select the

camera that should send its image as the active image to
the receivers. In the following, we will refer to the active

camera station as the broadcast camera station. We use

this term from the area of television transmission, but it

should not be mixed up with its meaning in the context

of computer networks.

The choice of the broadcast station is communicated

to the camera station using CORBA requests, whereas

the video and audio data are distributed using config-

urable IP transport protocols. The camera station which

gets the broadcast token from the control desk starts

sending its input in high resolution and at highest

achievable frame-rate to a multicast address. All control

information, like image dimensions and frame-rate, can

be dynamically configured during a session. Changes in

the setup are also propagated using the ORB. Fig. 1

shows a system overview of our test bed.

The receivers first ask the control desk for informa-

tion about the currently distributed program. Then they

add themselves to the multicast session using the A/V

Streaming Service. The control desk knows about all the

distributed camera stations delivering possible input.

But it does not keep track of the receivers and does not

exchange any information with them, except for the

setup data.

Since the high-quality stream of the broadcast camera

station is distributed using UDP multicasting, the

system scales very well to a high number of receivers.

Furthermore, there is no a priori limit on M; the number
of camera stations, even though every new camera

station introduces additional network traffic and in-

creases the workload at the control desk. In fact, we can

trade-off M against the quality of the preview images,

while dynamically configuring the image resolution and

the frame-rate of the preview video streams. Finally,

since there is no centralized sender of the broadcast

stream, the A/V data is transmitted with minimal

overhead and latency.

4.2. Supported data

4.2.1. Control information

The control information, which is different from the

audio and video samples, includes commands for

managing the streams, i.e., start/stop, as well as

configuration parameters for the data acquisition. It

can also be used for monitoring the system. The control

desk configures for example:

* The dimensions of the video images and the

acquisition frame-rate at the camera station.
* The sample frequency of the audio acquisition.
* The permission to send to the multicast address.

The action of switching from camera station A to

camera B station as the broadcast station can thus be

summarized with the following actions:
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* Send current broadcast settings to B:
* Instruct A to stop sending to the multicast address.
* Instruct B to start sending to the multicast address.

The A/V Streaming specification suggests that a

media control object is associated to each FlowEnd-

Point. The media controller implements device specific

operations, which are not general enough to be handled

by StreamCtrl objects. Since the media controller is

completely specified by the application developer, any

type of information can be communicated and the

requirements of different applications can be met. Fig. 3

depicts a typical stream setup in a point-to-point

connection and shows the different paths for control

and real-time streaming data.

4.2.2. Audio/video transmission

The video frames are grabbed as RGB images with

24 bits per pixel color information. As camera stations,

we use SGI O2 workstations with video option. In this

paper, we focus on dynamically configurable A/V

streams and we assess the performance of TAO’s A/V

Streaming Service implementation. Hence, we did not

yet integrate any compression algorithms in Campus

TV. Of course, this would be necessary for deploying

Campus TV in a large scale environment.

TAO’s A/V Streaming Service implementation pro-

vides a pluggable protocol framework, in which the

most common IP-based transport protocols, such as

TCP, UDP (unicast and multicast), and RTP, as well as

ATM, are already included. A factory object encapsu-

lates the concrete protocol objects and simplifies the

addition of future data transfer protocols. Furthermore,

it allows us to rapidly integrate different protocols into

our application. Since the connection setup is completely

handled by the A/V Streaming Service specification, the

application programmer only needs to adapt his payload

data to the various protocols. In our case, we use for

example sequence numbers for identifying the fragmen-
Fig. 3. Streaming video images from a data source to a data sink using a point-to-point connection.
ted image packets. TCP and RTP have already sequence

numbers in their protocol headers, UDP has not. Hence,

we implemented an additional software layer, that

handles the protocol-dependent packetization of our

pay-load data.

The CORBA A/V specification distinguishes between

flows, carrying data in one direction, and streams,

comprising a set of flows. There are two ways of

specifying a connection, either via the light or via the full

profile. In the light profile, the application is granted

access only to stream endpoints, as well as to virtual and

multimedia devices. According to [4], virtual and multi-

media devices abstract physical or logical devices

consuming or producing the samples of the multimedia

stream. If access to the flow end-points or the flow

connection is required, the full profile must be used. The

TAO/ACE framework implements both configurations.

We used the full profile, since the separate access to the

video and audio flows makes our design more flexible

for further investigations.

A critical issue for the efficient distribution of data

from one to many users is the availability of point-

to-multipoint communication. Of course, a point-to-

multipoint distribution can be realized using many point-

to-point connections, but this strategy does not make

efficient use of the available resources. The CORBA A/V

Service specification includes point-to-multipoint bind-

ing, but does not define multipoint-to-multipoint bind-

ing, where several sources communicate with several

sinks. The TAO framework, however, supports multi-

point-to-multipoint communication, which finally is an

important feature of our test application.

Additionally, in classical UDP multicasting, the data

source is not aware of whoever is listening to its data

transmission. In the CORBA A/V Service, however,

each data sink needs to be explicitly added to the data

sources’ stream controllers. In our application, the

control desk defines naturally the stream configuration

and candidate camera stations as well as receivers must
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judge during connection establishment if they are able to

handle the available streams.
5. Implementation

In the following, some implementation details of the

different components of our Campus TV application are

presented.

5.1. Control desk

The control desk is used for configuring a broadcast

session and is the interactive part in our application. A

screenshot representing the control desk’s graphical user

interface is shown in Fig. 4. The left part of the user

interface is dedicated to the thumbnail preview images,

the right part deals with the broadcast stream.

The control desk first registers itself at the CORBA

Naming Service, where the clients can later retrieve a

reference to the control desk object.

Upon the clients’ requests, the control desk distributes

setup information to both camera stations and receivers.

From a practical point of view, a separate service could

offer this functionality to the receivers.

Furthermore, the control desk initializes the multicast

transmission, since it is the first listener to the attributed
Fig. 4. The graphical user inte
multicast address. It also creates the first data source,

which is actually a dummy source, but which is required

by TAO’s implementation of the A/V Streaming

specification for multipoint connection setup.

The application can be implemented according to two

different strategies: reactor-based or process-based. For

the Campus TV control desk, the process-based strategy

would lead to a new process for every connecting camera

station. Currently, we implemented the reactor-based

strategy, i.e. all input from the camera stations is

handled by the same process, and events indicate that

new data has arrived. Since the update rates of the

thumbnail preview images are not very high, the reactor-

based control desk’s performance is sufficient. An

analysis of the control desk’s scalability with respect

to the number of camera stations can be found in

Section 6.3.

Apart from the Naming Service, the control desk also

uses the CORBA Property Service for retrieving a

reference of the media controller of a given camera

station.

All graphical user interfaces have been implemented

using Trolltech’s Qt cross-platform GUI framework

(http://www.trolltech.com). Since our goal is to build a

portable communication layer, we also need a GUI

toolkit available for all platforms of interest. Another

significant advantage of the Qt library consists in its
rface of the control desk.

http://www.trolltech.com
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OpenGL support (http://www.opengl.org). The Qt

classes QGLWidget, QGLContext and QGLFormat allow,

respectively, to create an OpenGL rendering context and

display format and to render an OpenGL scene

integrated into a Qt GUI. Although OpenGL rendering

is not necessary for Campus TV, we will need it for our

future research, which deals with geometry-enhanced

video and its integration into virtual scenes.

Rendering video images in OpenGL is possible with

two different strategies: The OpenGL glDrawPixels

function allows us to write a block of pixels directly to

the frame buffer. The second possibility consists in a

texture map of the video image on a polygon. On

modern graphics processing units, texture mapping is

generally faster and less CPU-consuming than the pixel

drawing strategy.

Note that the Simple DirectMedia Layer (http://

www.libdsl.org) provides a similar functionality and

could be used for an alternative implementation.

5.2. Camera station

The video images are grabbed at regular time

intervals. The frame-rate of the video acquisition can

be controlled by changing the time-out value. The audio

acquisition is implemented in an analogous way to the

video acquisition.

When a camera station is started, it asks for a

reference to the control desk at the Naming Service and

then connects itself with the control desk. It starts

transmitting video data according to the current

configuration. The camera station joins the multipoint-

to-multipoint connection already during setup. Hence, it

is ready to start sending both audio and video data to

the multicast address as soon as it becomes the broad-

casting station.

5.3. Receiver

The receiver first retrieves information about the

current session from the control desk. Then it connects

to the multicast address and presents the received data

to the user.

Receiver and control desk only interact during the

initial connection. The control desk cannot directly

configure the receivers and is unaware of the number or

type of current receivers. Currently, our implementation

does not include an explicit synchronization for audio

and video play out.
6. Performance analysis

This section summarizes the performance analysis we

conducted with the Campus TV test bed. After

describing the experimental setup, we discuss our results
concerning interaction delays, scalability and audio/

video jitter.

6.1. Experimental setup

For the following experiments, we used up to ten SGI

O2 workstations with video option as possible camera

stations and an SGI Octane as the control desk’s host. The

workstations were all running SGI Irix 6.5 and connected

by a 100 Mbps Fast Ethernet switch. We ran the tests

when the average load on our local area network was low.

Note that all experiments in Sections 6.2 and 6.3 were

done without audio transmission. Moreover, some of

the following configurations are only useful for testing

purposes. Running Campus TV in ‘‘application mode’’

requires low resolution preview images at 5–10 Hz and

high-resolution broadcast images, using RTP for data

transmission.

6.2. Interaction delay

We call interaction delay the duration between issuing

a CORBA request at the control desk and the moment

of reception of the first video frame according to the new

mode. In practice, our camera station’s media controller

implements a method for changing the color of a given

pixel after frame acquisition. At the control desk, we

check the test pixel’s RGB values in the received video

frames, and hence we can measure the delay between

issuing the setColor command at the control desk and

the reception of the corresponding frame. The IDL

interface of the function is as follows:
struct Color {
short r;
short g;
short b;
};
void setColor (in Color col);
We measured the interaction delay by generating

automatically a series of setColor commands at the

control desk. We fixed a range for the duration in

between two setColor invocations and generated

uniformly distributed time-outs in that range. The test

results presented in this paper were obtained with time-

out values between 250 and 750 ms: They are based on
1024 samples, respectively, i.e., every experiment ran for

about 8 min and 30 s:We repeated the same experiments
for various time-out ranges, but we did not observe

significant differences in the resulting interaction delays.

Three image resolutions for both preview and broad-

cast images can be configured:

* low: 64� 64 pixels.
* medium: 128� 128 pixels.
* high: 256� 256 pixels.

http://www.opengl.org
http://www.libdsl.org
http://www.libdsl.org
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Preview = Low / Medium, Traffic = 34 / 62 Mbps
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Fig. 5. Semi-logarithmic plot of the interaction delay distribu-

tion for configurations with low- and medium-resolution

preview images from ten camera stations, the broadcast image

has high resolution.
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Fig. 6. Semi-logarithmic plot of the interaction delay distribu-

tion for configurations with high-resolution preview images

from five camera stations, the broadcast image has high

resolution.
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Table 1 shows the mean value and the stan-

dard deviation for different preview image resolu-

tions and for UDP, RTP and TCP point-to-point

connections, respectively. The resolution of the broad-

cast image was 256� 256 pixels in each case.

The interaction delay was measured on the broadcast

connection. With the resolution of the preview

images, we can influence the network traffic. In the

low- and medium-resolution configuration, we used 10

camera stations, sending preview images at 10 Hz: This
leads to a network traffic of approximately 34 or

62 Mbps; respectively. The broadcast video is always

streamed at the maximum possible frame-rate. For the

low and medium sized preview images, a broadcast

frame-rate of 14–17 Hz is achieved. In the high-

resolution case, we only used five camera stations at

10 Hz; which leads to an approximate network traffic of
100 Mbps; i.e., a certain amount of packets is certainly
lost. The broadcast frame-rate drops down to 5–7 Hz:
The loss indicated in Table 1 refers to the broadcast

stream.

Note that in the UDP test case, we also used UDP

multicasting for the multipoint-to-multipoint broadcast

communication, in the RTP and TCP test cases, we used

RTP multicasting for the broadcast image. A sample is

regarded as lost if a corresponding broadcast image

frame is never received.

In Figs. 5 and 6, the vertical axis indicates, for a time

interval Dt; the percentage of samples, where the

interaction delay was larger than Dt: Hence, Figs. 5
and 6 represent an approximation of a probability

distribution PðtÞ; where Pðt ¼ DtÞ is the probability that
the interaction delay is larger than Dt:
In Fig. 5, we observe that in the configuration with

low sized preview images, 99% of the interaction delays

were shorter than 175 ms: The choice of the transport
protocol did not significantly influence the probability

distributions. In the case of medium sized preview

images, the probability distributions for UDP and RTP

are only slightly different from the previous case. But for
Table 1

Interaction delay measurement statistics for different protocols and preview image resolutions, using a broadcast resolution o

256� 256 pixels

Preview/broadcast Mean (ms) StDev (ms) Min (ms) Max (ms) Loss (%

UDP-low/UDP-high 135 20 104 179 0

RTP-low/RTP-high 136 20 104 182 0

TCP-low/RTP-high 134 19 104 183 0

UDP-medium/RTP-high 148 21 113 199 0

RTP-medium/RTP-high 146 21 101 212 0

TCP-medium/RTP-high 184 45 111 577 0

UDP-high/UDP-high 258 32 203 316 32

RTP-high/RTP-high 257 32 204 320 36

TCP-high/RTP-high 425 146 250 1074 3
f

)
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Fig. 7. CPU load for different RTP Preview/Broadcast config-

urations at the camera station.
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number of preview images and preview acquisition frequency
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TCP, we already observe a significant increase of the

interaction delay.

In the case of preview images at a high resolution, see

Fig. 6, the average interaction delay increases by more

than 100 ms for UDP and RTP. Also the standard

deviation of the UDP and RTP data sets increases by

approximately 50%. We realize that in this configura-

tion, TCP is not competitive anymore, the interaction

delay values of the TCP samples are much higher than

for the two unreliable protocols. Note that in this test

case, where the network traffic is very high, a certain

amount of multicast frames from the broadcasting

camera station get lost, and hence not every sample

generates a valid interaction delay. The amount of lost

frames is indicated in Table 1.

Furthermore, part of the observed interaction delay is

due to the low frame-rate at the high-resolution

configuration. If both resolutions for preview and

broadcast images are 256� 256 pixels, the frame-rate

of the broadcast stream drops down to 5–7 Hz: The
expected delay simply due to this low frame-rate is at

least 70 ms; and hence cannot be totally neglected.
The probability distribution curves of the UDP and

RTP experiments lead to the conclusion that the

interaction delay can be bounded. For each setting, the

interaction delays occurred in a given time frame, whose

mean and width were depending on the average network

load. The interaction delay is much less predictable for

TCP because of its inherent flow control algorithms.

Finally, we observe that the probability distributions

for RTP and UDP are in general very similar. On one

hand, this can be expected since RTP uses UDP as its

transport protocol. On the other hand, it confirms that

TAO’s RTP implementation does not introduce a

significant amount of overhead.

6.3. Scalability

Fig. 7 shows the average CPU load at a camera

station for various configurations. The camera station

which is also the broadcast station needs to transmit

both low-quality preview images and high-quality

broadcast images. We observe that the CPU load

increases significantly with the size of the video frames.

The acquisition frequency is only relevant for the

preview images, the broadcast images are always

streamed at the maximum possible frame-rate. Note

that in the configuration with high-resolution broadcast

images and low-resolution preview images, acquisition

frequencies higher than 20 Hz are not achievable. The

two first data sets in Fig. 7 were obtained with a preview

stream only.

In Fig. 8, it appears that the CPU load at the control

desk is much more influenced by the number of camera

stations than by their frame-rate. If we increase the

number of camera stations from one to eight, the CPU
load only grows from 30% to 60%. For high acquisition

frequencies, the network load does not allow a very

regular frame-rate for the broadcast stream. This

explains why the variation in some test cases is not

monotonic. In fact, the update rate of the broadcast

image at the control desk lies between 14 and 17 Hz:
The scalability experiments were all done with RTP

and RTP multicast for the preview and the broadcast

images respectively.

6.4. Audio/video jitter

Additionally, we investigated the phase jitter between

audio and video data. Looking at the video and audio

packet transmission, we observed no delays between

audio and video packets at the broadcast camera station
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and at the receivers. However, as can be seen in Fig. 7,

the high-quality video transmission uses already 80% of

the camera station’s CPU. In this case, a constant delay

of about 0:5 s between audio and video play out can be
perceived. It can be explained by our non-optimized

audio acquisition scheduling and play out algorithms.

An optimization of the audio transmission was beyond

the focus of this paper, since, in the blue-c system, speech

transmission will be handled by a different subsystem

than the geometry-enhanced video transmission.
7. Conclusions and outlook

The performance analysis presented in this paper

shows that the CORBA A/V Streaming Service intro-

duces no critical overhead for multimedia data transmis-

sion. The concept of media controllers allows the flexible

integration of application specific interactions within the

streaming framework. Our measurements show that the

interaction delay is bounded when using appropriate

transport protocols, like UDP and RTP. The absolute

value of the interaction delay depends on the average

network load. Furthermore, the Campus TV control

desk scaled well with an increasing number of camera

stations. In the future, the pluggable protocol frame-

work of the TAO service implementation will allow us to

run similar tests on different network configurations.

Finally, the results of this study will influence important

design decisions in our future distributed virtual reality

platform, i.e. we will use our findings for deciding what

type of requests can be handled by the ORB, and what

type of information, apart from the multimedia data,

needs to be streamed in real-time.

However, concerning the TAO/ACE framework, we

encountered some problems during the implementation

of Campus TV. The connection setup is not completely

transparent and we had to take special care with RTP

transmission. This is especially due to the fact that

TAO’s RTP implementation is still a bit unwieldy. But

improved TAO versions appear on a regular basis and

its open source character allows for bypassing local

problems.

Note that in our target application, the blue-c system,

the data for controlling and monitoring will be much

more complex and diverse than in the Campus TV test

application. At that point, we will take fully advantage

of the standardized stream interfaces of the A/V

Streaming Service as well as of the flexibility provided

through the concept of media controllers. Possible

optimizations with respect to acquisition and compres-

sion will also be taken into account for the geometry-

enhanced video streams in the upcoming blue-c proto-

type. A first prototype is currently under development

and uses extensively the functionality provided by

CORBA and its A/V Streaming Service. In the future,
we also want to further investigate the possibilities

offered by the MPEG-4 standard, which supports the

integration of multimedia streams and traditional A/V

formats with synthetic images as well [26].

Finally, we envision to extend the Campus TV

application such that special effects, e.g., image warps

and fade-outs, can be performed on the video images.

These special effects can be easily and efficiently

implemented at the receiver, using OpenGL commands

on the polygons on which the live video texture is

mapped.
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