
Appeared in Lake Tahoe Workshop, Lake Tahoe, California

Mesh Edge Detection

Andreas Hubeli, Kuno Meyer, Markus Gross

Department of Computer Science, ETH Zurich, Switzerland

Abstract
We present a framework to extract line-type features from

unstructured two-manifold meshes. Our method computes a col-
lection of piecewise linear curves describing the salient features of
the mesh, such as edges and ridge lines. Our algorithms are semi-
automatic, that is, they require the user to input a few control
parameters and to select the operators to be applied to the mesh.

Our mesh edge detection algorithm can be used as a preproces-
sor for a variety of applications including mesh fairing and
smoothing.

1 Introduction
Recent advances in acquisition systems have resulted in the

ready creation of very large, densely sampled surfaces, usually
represented as triangle meshes. The impossibility of real-time
interaction with these large models has motivated many research-
ers in the computer graphics community to design advanced mesh
processing methods including subsampling, restructuring, fairing
and others. The early approaches, such as the vertex removal algo-
rithm of W. Schröder [7] or the progressive mesh algorithm of H.
Hoppe [4], use local error norms to construct multiresolution
approximations of meshes by iteratively removing information
from the input mesh.

More recent representations are based on the generalization of
fairing techniques from signal processing [8], [6], [5]. They use
multiresolution algorithms to improve the mesh approximation. In
this paper we investigate a related problem: mesh edge detection.
Our goal is to extract line-type features from meshes which can be
used to construct more sophisticated multiresolution representa-
tions. The most important advantage of using line-type features is
that we can force fairing algorithms to retain feature information,
such as sharp edges or ridge lines - much in the same way it was
accomplished for subdivision surfaces. We achieve this goal by
generalizing well known computer vision techniques, such as [1],
to meshes with arbitrary connectivity.

The paper is organized as follows: in section 2 we present the
first major component of our framework, the set of classification
operators. In section 3 we introduce the second component of our
framework, the detection operators. In section 4 we describe some
of the experimental results we obtained using this technique.
Finally, we discuss some work in progress.

E-mail: hubeli@inf.ethz.ch
meyerk@student.ethz.ch
grossm@inf.ethz.ch

Address: Department of Computer Science
ETH Zentrum
CH - 8092 Zurich

2 Classification Phase
The classification operators basically assign a weight to every edge
in the mesh. The weight is proportional to the importance of the
edge: ideally, edges close to or on line-type features should be
assigned large weights whereas all remaining edges should get
small weights. The weights will then be used to extract the subset
of the “most important” edges, the so-called feature edges. They
are employed in the detection phase to construct the line-type
mesh features.

In the following subsections we will describe some of the classi-
fication operators we designed and tested.

2.1 Second Order Difference (SOD)
This most simple operator assigns a weight to every edge in the

mesh proportional to the dihedral angle defined by the normals of
its two adjacent triangles. The idea is similar to the second order
difference operator constructed by Guskov et al. in [2] which was
used to fair meshes of arbitrary connectivity. The operator,
described by equation (1), is locally bound and can be evaluated
efficiently.

(1)

and correspond to the normals of the two triangles that
share edge .

This technique is well suited for coarse, pre-optimized meshes.
SOD however, performs poorly on very smooth or noisy meshes,
since all computations are carried out within a small region of sup-
port.

The results in figure 5.a were generated using this operator.

2.2 Extended Second Order Difference (ESOD)
With only a little effort we can build a simple extension to the

previous operator. Instead of using the normal of the two neighbor-
ing triangles, we take the average normals computed from the one-
ring of the vertices opposite to the edge and apply them to equation
(1). This is shown in figure 1.

The increase in the size of the support has the expected impact:
the influence of noise on the classification process is significantly
attenuated. However, as a drawback, ESOD does not perform that
well on coarse meshes.

Figure 1: Support of the extended second order difference operator

w e()
ni

ni

n j

n j
----------⋅

1–

cos=

ni n j
e

ni
n j

x jxi

e

Appeared in Lake Tahoe Workshop, Lake Tahoe, California

2.3 Best Fit Polynomial (BFP)
In this approach all the vertices used to evaluate the classification

operator on an edge are projected onto a two-dimensional parame-
ter plane. The projected vertices are then interpolated with a best
fit polynomial of degree n. Finally the curvature of the (pla-
nar) polynomial is evaluated at the edge position , as described
by equation (2):

(2)

The major difficulties of this approach are the definition of the
parameter plane and the proper projection of the initial vertices
from 3-space. An intuitive definition of the parameter space is
given in figure 2:

We propose to set the parameter plane to be perpendicular to the
edge being considered. In addition, the midpoint of the edge is
defined to lie on the plane. The points used in the best fit process
are computed from the intersection of the plane with a set of neigh-
boring triangle edges. The most important advantage of this strat-
egy is that the support of the operator can be chosen freely. That is,
we can even adapt it locally for each edge. Furthermore, the degree
of the fitting polynomial can be adjusted to the size of the support.

Both figure 5.b and figure 5.c were generated with variations of
this operator.

2.4 Angle Between Best Fit Polynomials (ABBFP)
The last operator is an extension to the previously introduced

polynomial fit. As in the previous case, polynomials are fitted
through the parameter plane of every edge. This operator actually
fits two polynomials: one for the vertices that lie on one side of the
edge, and one for the vertices lying on the other. The weight
assigned to the edge is then chosen to be proportional to the angle
between the two curve tangents evaluated at the edge position. It
yields according to equation (3):

(3)

All the results in figure 6 were generated using this operator and
with support sizes ranging from 0.25% (figure 6.a) to 4% (figure
6.c) of the size of the object bounding box.

3 Detection Phase
As previously discussed, the classification operators are used to
assign a weight to every edge in the mesh. The larger the weight,
the “more important” the edge. In a second phase, proper feature
lines need to be constructed. This is accomplished in three steps:
• First, a subset of feature edges is constructed. Only edges in this

set will be further considered to compute the final set of line-
type features.

• Next, the feature edges are clustered into patches. These patches
define mesh regions where line-type features are present.

• Finally, the line-type features are extracted using a skeletonizing
algorithm that reduces the patches to piecewise linear curves.

3.1 Selection of Feature Edges
This process is heavily mesh and user dependent, since the num-

ber of feature edge candidates depends both on the size and geom-
etry of the mesh and on the user’s intention. Hence, we require the
user to select appropriate threshold values. We propose the follow-
ing two different strategies for thresholding:

Standard Thresholding
The most simple thresholding approach analyzes every edge sep-

arately. Based on a user-provided parameter it decides whether an
edge is a feature edge. The user can specify the threshold parame-
ter both in percentage of edges that must be preserved, or as the
minimal weight that an edge must have to be included into the sub-
set of feature edges.

Hysteresis Thresholding
This type of approach uses two threshold values serving as a

lower and an upper bound of a hysteresis. If the weight associated
with an edge is larger than the upper value, the edge is automati-
cally defined as a feature edge. If the weight is smaller than the
lower bound, then the edge is automatically discarded. The
remaining edges, whose weights lie between the lower and upper
bounds, are only defined as feature edges if one or more of their
neighbors are feature edges. The advantage of this approach is that
it constructs smoother patches in regions where feature edges are
present.

3.2 Construction of the Patches
The patches are generated from the subset of feature edges using

the following approach:

• every edge that shares both of its vertices with feature edges is
inserted into the subset of feature edges.

As an example consider the figure 4. The results illustrated in
figure 4.b demonstrate that the patches are filled with feature edges
and that the size of the patches is clearly bound.

Figure 2: Illustration of the parameter plane used for the BFP method (top view)

Figure 3: ABBFP operator

p u()
e

w e() p'' e()=

Support = 5

e

w e()
1 pl' e(),()
1 pl, ' e()()

1 pr, ' e()()
1 pr, ' e()()

------------------------------⋅

1–
cos=

?

ProjektionsebeneProjection plane

Figure 4: Construction of the patches:
a) Subset of feature edges computed by the hysteresis thresholding scheme
b) Set of patches generated using the method of section 3.2

a) b)

Appeared in Lake Tahoe Workshop, Lake Tahoe, California

3.3 Skeletonizing
As described the output of the previous step is a set of patches.

As such, a patch is a collection of edge features describing the
neighborhood of one or more line-type features. The final step of
the detection phase is to reduce these patches to a set of line-type
features. We accomplished this using the following two skeletoniz-
ing strategies:

Triangle Based Skeletonizing
This approach reduces patches to lines of a thickness smaller or

equal to 2 by removing triangles from the patch - one at a time. In
order to get the correct result, we have to impose constraints on the
removal strategy. The drawback of this approach is that it might
break up larger line-type features into multiple disconnected seg-
ments. The advantage is that can be computed very efficiently. A
more detailed description has to be omitted for brevity.

Vertex Based Skeletonizing
In the second approach, we use potential fields to remove verti-

ces from the patch. In a first step, a potential field is defined for
every vertex whose strength is proportional to its distance from the
patch boundary. Next, we discard all the vertices that have at least
one neighbor with a larger potential. As a result we obtain a surviv-
ing subset of disconnected vertices. These vertices are subse-
quently glued together using certain assumptions on the potential
fields. Again, further details have to be omitted.

4 Results
In this section we will present and discuss experimental results
obtained on different meshes. We used both well known meshes,
such as the bunny, mannequin, motor part, and the golf club, as
well as a simple, smooth geological surface. Most of the meshes
have an arbitrary connectivity, and they exhibit some sharp line-
type features. The geological surface is the only exception, being a
regular grid and not having any salient features.

In the first sequence of pictures presented in figure 5 we compare
some of the operators defined in section 2. On this mesh we
obtained the best results by using operators with small support.
This is due to the fact that the model is only sparsely sampled. As a
consequence, operators with large support include information that
is geometrically too far away from the edge. This problem was
addressed by constraining the support of the BFD operators. Both
the SOD operator and the BFP operators generated good results.

In the second sequence illustrated in figure 6 we capture the
influence of the support of the ABBFP operator. From left to right
we show the influence of increasing the support from 0.25% to 4%
of the size of the bounding box. In figure 6.a the support is too
small, and as a consequence, the noise of the mesh corrupts the
performance of the classification operator. At the other extreme, in
figure 6.c the support of the operator is too large. Hence, the
marked edges are clustered around only a few of the prominent
mesh features. The best results have been achieved by setting the
support to an intermediate value of 2%, as shown in figure 6.b.

Finally, figure 7 depicts the results obtained on different meshes
by combining the classification and detection operators appropri-
ately. Interestingly, the line-type features of the head mesh of fig-
ure 7.a include the outlines of the eyes, mouth, ears, nose and
eyebrows - as we would expect it from a feature extraction algo-
rithm. The features of the golf club mesh of figure 7.b have been
recognized correctly, and all the sharp edges have been captured.
Our last image in figure 7.c shows a geological surface. Although
the surface does not contain any salient edges, our framework
extracted a few features. By comparing these results to the actual
structure of the surface, we found that the algorithm extracted local
ridges and valley lines in the mesh.

5 Conclusions and Future Work
In this paper we presented a framework for the detection of line-
type features in meshes of arbitrary connectivity. We proposed a
two-stage process consisting of a classification phase and a detec-
tion phase. In order to handle a variety of different meshes, we
provide a set of operators with different properties.

As already mentioned, the user must select the operators as well
as a few parameters for the classification and detection steps. As
such, the process is not fully automatic. It still requires manual
assistance and tuning for optimal performance. We do not consider
this as a major drawback, since all algorithms can be computed
efficiently.

The presented results are encouraging, and we expect some
major improvements in the near future. The most important ones
include:
• Computational efficiency: although the operators are fairly effi-

cient, it still takes a few seconds (up to a few minutes for very
large meshes) to compute the features. This is certainly a draw-
back for interactive applications where a user might try different
operators to optimize the results.
We will tackle this problem by designing a multiresolution rep-
resentation of the mesh. Since the multiresolution representation
effectively strives towards maintaining model features, we can
identify efficiently which edges need to be considered for the
computation.

• Improved classification strategy: the most important problem
encountered in the classification phase is that features are not
necessarily high frequency information. This is well known
from image edge detection. Although, intuitively, we tried to
capture low-frequency information by extending the support of
the operators improvements might be obtained by mesh decom-
position [3].
The advantage of such settings is that one could start the classifi-
cation process on a coarse, low-frequency approximation and
progressively improve the results while refining the mesh.

• For computational efficiency, our current skeletonizing strate-
gies are based on topological distance. Taking geometric dis-
tances instead might further improve the performance of the
framework.

• Our final goal is, of course, to provide a mesh analysis sophisti-
cated enough to automatically determine the optimal operators
and parameters.

Literature
[1] J. Canny. “A computational approach to edge detection.” In IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-8, No. 6, pages 679-696, Nov. 1986.

[2] I. Guskov, W. Sweldens, and P. Schröder. “Multiresolution signal
processing for meshes.” In SIGGRAPH ’99 Proceedings, Computer
Graphics Proceedings, Annual Conference Series. ACM SIG-
GRAPH, ACM Press, Aug. 1999.

[3] M. Gross and A. Hubeli. “Eigenmeshes.” Technical Report ETH Zur-
ich, Mar. 2000.

[4] H. Hoppe. “Progressive meshes.” In H. Rushmeier, editor, SIG-
GRAPH 96 Conference Proceedings, Annual Conference Series,
pages 99–108. ACM SIGGRAPH, Addison Wesley, Aug. 1996.

[5] A. Hubeli and M. Gross. “Fairing of non-manifolds for visualiza-
tion.” In Visualization 2000 Proceedings, Oct 2000.

[6] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. “Interactive
multi-resolution modeling on arbitrary meshes.” In M. F. Cohen, edi-
tor, SIGGRAPH 98 Conference proceedings, Annual Conference
Series, pages 105–114. ACM Press and Addison Wesley, July 1998.

[7] W. Schröder, J. Zarge, and W. Lorensen. “Decimation of triangle
meshes.” In SIGGRAPH 92 Conference Proceedings, Annual Con-
ference Series, pages 65–70, July 1992.

[8] G. Taubin. “A signal processing approach to fair surface design.” In
R. Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, pages 351–358. ACM SIGGRAPH, Addison
Wesley, Aug. 1995.

Appeared in Lake Tahoe Workshop, Lake Tahoe, California

Figure 5: Results computed on a motor part using different operators:
a) Line-type features computed using the SOD operator
b) Line-type features computed using an extension to the BFP operator
c) Line-type features computed using an extension to the BFP operator

Figure 6: Results computed on the bunny model using the ABBFP operator:
a) Edges detected using a support of 0.25% of the size of the object bounding box
b) Edges detected using a support of 1.0% of the size of the object bounding box
c) Edges detected using a support of 4.0% of the size of the object bounding box

Figure 7: Mesh edge detection applied to other models:
a) A mannequin head. Feature lines detected: eyes, nose, lips, ears, eyebrows
b) A golf club. All the sharp features have been detected correctly
c) A geological surface. Some interesting feature-lines could be extracted from this very smooth surface

a) b) c)

a) b) c)

a) b) c)

